Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(2022\text{x}2023+2023\text{x}2024\right)\text{x}\left(2023\text{x}99-2022\text{x}99-99\right)\)
\(=2023\text{x}\left(2022+2024\right)\text{x}99\text{x}\left(2023-2022-1\right)\)
\(=0\text{x}2023\text{x}4046\text{x}99=0\)
Số khoai còn lại là:
\(25131\cdot\dfrac{2}{3}=16754\left(kg\right)\)
Số túi chia được là:
16754:3=5584(dư 2 kg)
Bài 2:
a: Số số hạng là \(999-1+1=999\left(số\right)\)
Tổng của dãy số là \(999\cdot\dfrac{\left(999+1\right)}{2}=999\cdot500=499500\)
b: Số số hạng là \(\dfrac{2010-10}{2}+1=\dfrac{2000}{2}+1=1001\left(số\right)\)
Tổng của dãy số là \(\left(2010+10\right)\times\dfrac{1001}{2}=1011010\)
c: Số số hạng là \(\dfrac{79-1}{3}+1=27\left(số\right)\)
Tổng của dãy số là: \(\left(79+1\right)\times\dfrac{27}{2}=27\times40=1080\)
d: Số số hạng là \(\dfrac{155-15}{2}+1=71\left(số\right)\)
Tổng của dãy số là (155+15)x71/2=6035
Bài 3:
a: 71-(33+x)=26
=>33+x=71-26=45
=>x=45-33=12
b: (x+73)-26=76
=>x+73-26=76
=>x+47=76
=>x=76-47=29
c: 45-(x+9)=6
=>x+9=45-6=39
=>x=39-9=30
d: 89-(73-x)=20
=>73-x=89-20=69
=>x=73-69=4
e: (x+7)-25=13
=>x+7=38
=>x=38-7=31
f: 198-(x+4)=120
=>x+4=198-120=78
=>x=78-4=74
m: 7x-5=16
=>7x=21
=>x=21:7=3
n: 156-2x=82
=>2x=156-82=74
=>x=74:2=37
k: 10x+65=125
=>10x=125-65=60
=>x=60:10=6
Bài 1:
a: 36+59+64
=(36+64)+59
=100+59=159
b: 123-79+77
=(123+77)-79
=200-79=121
c: \(23\cdot46+23\cdot64\)
\(=23\cdot\left(46+64\right)\)
\(=23\cdot110=2530\)
d: \(19\cdot34+19\cdot66-900\)
\(=19\cdot\left(34+66\right)-900\)
=1900-900=1000
e: \(58\cdot75+58\cdot50-58\cdot25\)
\(=58\left(75+50-25\right)\)
\(=58\cdot100=5800\)
f: \(27\cdot39+27\cdot63-2\cdot27=27\cdot\left(39+63-2\right)\)
\(=27\cdot100=2700\)
m: \(128\cdot46+128\cdot32+128\cdot22\)
\(=128\cdot\left(46+32+22\right)=128\cdot100=12800\)
n: \(66\cdot25+5\cdot66+66\cdot14+33\cdot66\)
\(=66\left(25+5+14+33\right)=66\cdot77=5082\)
k: \(12\cdot35+35\cdot182-35\cdot94\)
\(=35\cdot\left(12+182-94\right)\)
\(=35\cdot100=3500\)
h: \(35\cdot23+35\cdot41+64\cdot65\)
\(=35\cdot\left(23+41\right)+64\cdot65\)
\(=35\cdot64+64\cdot65=64\cdot100=6400\)
\(\dfrac{3}{2\text{x}4}+\dfrac{3}{4\text{x}6}+...+\dfrac{3}{48\text{x}50}\)
\(=\dfrac{3}{2}\text{x}\left(\dfrac{2}{2\text{x}4}+\dfrac{2}{4\text{x}6}+...+\dfrac{2}{48\text{x}50}\right)\)
\(=\dfrac{3}{2}\text{x}\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+...+\dfrac{1}{48}-\dfrac{1}{50}\right)\)
\(=\dfrac{3}{2}\text{x}\left(\dfrac{1}{2}-\dfrac{1}{50}\right)=\dfrac{3}{2}\text{x}\dfrac{24}{50}=\dfrac{36}{50}=\dfrac{18}{25}\)
\(\dfrac{2}{3}A=\dfrac{2}{2\times4}+\dfrac{2}{4\times6}+...\dfrac{2}{48\times50}\)
\(\dfrac{2}{3}A=\dfrac{4-2}{2\times4}+\dfrac{6-4}{4\times6}+...+\dfrac{50-48}{48\times50}\)
\(\dfrac{2}{3}A=\dfrac{4}{2\times4}-\dfrac{2}{2\times4}+\dfrac{6}{4\times6}-\dfrac{4}{4\times6}+...+\dfrac{50}{48\times50}-\dfrac{48}{48\times50}\)
\(\dfrac{2}{3}A=\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+...+\dfrac{1}{48}-\dfrac{1}{50}\)
\(\dfrac{2}{3}A=\dfrac{1}{2}-\dfrac{1}{50}\)
\(\dfrac{2}{3}A=\dfrac{12}{25}\)
\(A=\dfrac{12}{25}\div\dfrac{2}{3}\)
\(A=\dfrac{18}{25}\)
x+(x+1)+(x+2)+...+(x+10)=88
=>11x+(1+2+...+10)=88
=>11x+55=88
=>x+5=8
=>x=3
Bài 1:
\(\dfrac{x-2}{5}=\dfrac{-2}{2y+1}\)
=>\(\left(x-2\right)\left(2y+1\right)=5\cdot\left(-2\right)=-10\)
mà 2y+1 lẻ
nên \(\left(x-2;2y+1\right)\in\left\{\left(2;-5\right);\left(-2;5\right);\left(-10;1\right);\left(10;-1\right)\right\}\)
=>\(\left(x;y\right)\in\left\{\left(4;-3\right);\left(0;2\right);\left(-8;0\right);\left(12;-1\right)\right\}\)
Bài 2:
a: \(\left(2x-1\right)^2+4>=4\forall x\)
=>\(B=\dfrac{20}{\left(2x-1\right)^2+4}< =\dfrac{20}{4}=5\forall x\)
Dấu '=' xảy ra khi 2x-1=0
=>\(x=\dfrac{1}{2}\)
b: \(\left(x^2+1\right)^2>=1\forall x\)
=>\(\left(x^2+1\right)^2+5>=1+5=6\forall x\)
=>\(C=\dfrac{10}{\left(x^2+1\right)^2+5}< =\dfrac{10}{6}=\dfrac{5}{3}\forall x\)
Dấu '=' xảy ra khi x=0
BÀI 4A
\(\dfrac{1}{-2}+\dfrac{1}{-6}+\dfrac{1}{-12}+\dfrac{1}{-20}+\dfrac{1}{-30}+\dfrac{1}{-42}+\dfrac{1}{-56}+\dfrac{1}{-72}+\dfrac{1}{-90}\\ =-1\cdot\left(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+\dfrac{1}{5\cdot6}+\dfrac{1}{6\cdot7}+\dfrac{1}{7\cdot8}+\dfrac{1}{8\cdot9}+\dfrac{1}{9\cdot10}\right)\\ =-1\cdot\left(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{10}\right)\\ =-1\cdot\left(\dfrac{1}{1}-\dfrac{1}{10}\right)=-1\cdot\dfrac{9}{10}=-\dfrac{9}{10}\)
Bài toán được mô tả như hình sau:
Xét \(\Delta ABC\) vuông tại A có:
\(\tan B=\dfrac{AC}{AB}\)
\(\Rightarrow AC=AB.\tan B=25.\tan40^{\circ}\approx21\left(m\right)=210\left(dm\right)\)