Phân tích đa thức thành nhân tử:
x2 + 2x - y2 +2y
Nhanh nhé!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\dfrac{2-5x}{3}+\dfrac{2x^2-x}{2}>\dfrac{x\left(3x-1\right)}{3}-\dfrac{5x}{4}\)
\(\Rightarrow8-20x+12x^2-6x>4x\left(3x-1\right)-15x\)
\(\Leftrightarrow8-26x+12x^2>12x^2-19x\Leftrightarrow8>7x\Leftrightarrow x< \dfrac{8}{7}\)
b, \(\Rightarrow20x+10x+5>30x-2\Leftrightarrow5>-2\)(luôn đúng)
Vậy bft luôn có nghiệm
Ta có \(\left(x-5\right)^4+\left(x-2\right)^4=1^4+2^4=2^4+1^4\)
TH1 \(\left\{{}\begin{matrix}\left(x-5\right)^4=1^4\\\left(x-2\right)^4=2^4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x-5=1\\x-5=-1\end{matrix}\right.\\\left[{}\begin{matrix}x-2=2\\x-2=-2\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x=6\\x=4\end{matrix}\right.\\\left[{}\begin{matrix}x=4\\x=0\end{matrix}\right.\end{matrix}\right.\)
TH2 \(\left\{{}\begin{matrix}\left(x-5\right)^4=2^4\\\left(x-2\right)^4=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x-5=2\\x-5=-2\end{matrix}\right.\\\left[{}\begin{matrix}x-2=1\\x-2=-1\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x=7\\x=3\end{matrix}\right.\\\left[{}\begin{matrix}x=3\\x=1\end{matrix}\right.\end{matrix}\right.\)
Đặt x−72=ax−72=a. Khi đó PT trở thành:
(a−32)4+(a+32)4=17(a−32)4+(a+32)4=17
⇔2a4+27a2+818=17⇔2a4+27a2+818=17
⇔2a4+27a2=558⇔2a4+27a2=558
⇔a4+272a2=5516⇔a4+272a2=5516
⇔(a2+274)2=49⇔(a2+274)2=49
⇒[a2+274=7a2+274=−7<0(vô lý)⇒[a2+274=7a2+274=−7<0(vô lý)
⇒a2=14⇒a=±12⇒a2=14⇒a=±12
⇒x=a+72=[43
A)x2-(x-1)2=15
=>(x+x-1)(x-x+1)=15
=>(2x-1)1=15
=>2x-1=15
=>2x=16
=>x=8
B)16x-(4x-5)=15
=>(4x)-(4x-5)=15
=>(4x+4x-5)(4x-4x+5)=15
=>(8x-5)5=15
=>8x-5=3
=>8x=8
=>x=1
P = 1+ \(\dfrac{x+3}{\left(x+2\right)\left(x+3\right)}:\left(\dfrac{8x^2}{4x^2\left(x-2\right)}-\dfrac{3x}{3\left(x^2-4\right)}-\dfrac{1}{x+2}\right)\)
= 1+ \(\dfrac{1}{x+2}:\left(\dfrac{2}{x-2}-\dfrac{x}{\left(x+2\right)\left(x-2\right)}-\dfrac{1}{x+2}\right)\)
=1+\(\dfrac{1}{x+2}:\left(\dfrac{2\left(x+2\right)}{\left(x+2\right)\left(x-2\right)}-\dfrac{x}{\left(x+2\right)\left(x-2\right)}-\dfrac{1.\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\right)\)
= 1 + \(\dfrac{1}{x+2}:\left(\dfrac{2x+4-x-x+2}{\left(x+2\right)\left(x-2\right)}\right)\)
=1 + \(\dfrac{1}{x+2}\): (\(\dfrac{6}{\left(x+2\right)\left(x-2\right)}\))
=1 + \(\dfrac{1}{x+2}\).\(\dfrac{\left(x+2\right)\left(x-2\right)}{6}\)
= 1 + \(\dfrac{x-2}{6}\)
= \(\dfrac{6+x-2}{6}\)
= \(\dfrac{x+4}{6}\)
1. 5.(x+2)-2x.(x+2)=0
(x+2).(5-2x) = 0
+) TH1: x+2=0
=> x=-2
+) TH2: 5-2x=0
=>2x=5
=>x=5/2.
2. (x-1)^2 - 25=0
=> (x-1)^2 = 25
=> (x-1)^2 = 5^2
=> x-1 = 5
=> x=6.
Ta có :
x2+2x-y2+2y = x2 - y2 + 2x+2y
= (x-y)(x+y) + 2(x+y)
= (x-y+2)(x+y)