giải phương trình \(\sqrt{5x-6}+\sqrt{10-3x}=2x^2-x-2\)
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
TH
7
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
7 tháng 1 2018
Xét :A = x^2017 + x^2017 + 1 + 1 + 1 +..... + 1 ( 2015 số 1)
Áp dụng bđt cosi ta có :
A >= 2017\(\sqrt[2017]{x^{2017}.x^{2017}.1.1.....1}\) = 2017x^2
=> x^2 < = A/2017 = 2x^2017+2015/2017
Tương tự : y^2 < = 2y^2017+2015/2017
z^2 < = 2z^2017+2015/2017
=> x^2+y^2+z^2 < = 2(x^2017+y^2017+z^2017)+3.2015/2017 = 2.3+3.2015/2017 = 3
Dấu "=" xảy ra <=> x=y=z=1
Vậy Max của x^2+y^2+z^2 = 3 <=> x=y=z=1
Tk mk nha
DH
0
![](https://rs.olm.vn/images/avt/0.png?1311)
Cái này Liên ợp thần chưởng thôi !
ĐK: \(\frac{10}{3}\ge x\ge\frac{6}{5}\)ta có pt
<=>\(2x^2-4x+3x-6=\sqrt{5x-6}-2+\sqrt{10-3x}-2\)
<=>\(2x\left(x-2\right)+3\left(x-2\right)=\frac{5\left(x-2\right)}{\sqrt{5x-6}+2}+\frac{3\left(2-x\right)}{\sqrt{10-3x}+2}\)
<=>\(\left(x-2\right)\left(2x+3+\frac{3}{\sqrt{10-3x}+2}-\frac{5}{\sqrt{5x-6}+2}\right)=0\) (1)
Vì \(\sqrt{5x-6}+2\ge2\Rightarrow\frac{-5}{\sqrt{5x-6}+2}\ge-\frac{5}{2}\)
Mà \(x\ge\frac{6}{5}\Rightarrow2x+3-\frac{5}{\sqrt{5x-6}+2}+\frac{3}{\sqrt{10-3x}+2}>0\)
Nên pt(1) <=> x=2 (thỏa mãn ĐK)
vậy ...
^_^