Cho bảng ô vuông cỡ 17.17 . Các số 1,2,3,...,17 được điền vào mỗi ô vuông của bảng sao cho mỗi ô vuông chứa đúng một số và mỗi số xuất hiện đúng 17 lần trong bảng. Chứng minh rằng tồn tại 1 hàng hoặc 1 cột chứa ít nhất 5 số phân biệt
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(\frac{2.18-1}{18}\right)\left(\frac{2.18-2}{18}\right)\left(\frac{2.18-3}{18}\right)....\left(\frac{2.18-35}{18}\right)\left(\frac{2.18-36}{18}\right)\left(\frac{2.18-37}{18}\right)...\left(\frac{2.18-100}{18}\right)\)
\(=\frac{35}{18}.\frac{34}{18}.\frac{33}{18}...\frac{1}{18}.\frac{0}{18}.\frac{-1}{18}...\frac{-64}{18}=0\)
\(max\left\{x_1;x_2;...;x_n\right\}\ge\frac{x_1+x_2+...+x_n}{n}+\frac{\left|x_1-x_2\right|+\left|x_2-x_3\right|+...+\left|x_{n-1}-x_n\right|+\left|x_n-x_1\right|}{2n}\)
Đề Tuyển sinh lớp 10 chuyên toán ĐHSP Hà Nội 2012-2013
NGUỒN:CHÉP MẠNG,CHÉP Y CHANG CHỨ E KO HIỂU GÌ ĐÂU(vài dòng đầu)-lỡ như anh cần mak ko có key. ( VÔ TÌNH TRA TÀI LIỆU THÌ THẦY BÀI NÀY )
P/S:Xin đừng bốc phốt.
Để ý trong 2 số thực x,y bất kỳ luôn có
\(Min\left\{x;y\right\}\le x,y\le Max\left\{x,y\right\}\) và \(Max\left\{x;y\right\}=\frac{x+y+\left|x-y\right|}{2}\)
Ta có:
\(\frac{x_1+x_2+...+x_n}{n}+\frac{\left|x_1-x_2\right|+\left|x_2-x_3\right|+.....+\left|x_n-x_1\right|}{2n}\)
\(=\frac{x_1+x_2+\left|x_1-x_2\right|}{2n}+\frac{x_2+x_3+\left|x_2-x_3\right|}{2n}+.....+\frac{x_3+x_4+\left|x_3-x_4\right|}{2n}+\frac{x_4+x_5+\left|x_4-x_5\right|}{2n}\)
\(\le\frac{Max\left\{x_1;x_2\right\}+Max\left\{x_2;x_3\right\}+.....+Max\left\{x_n;x_1\right\}}{n}\)
\(\le Max\left\{x_1;x_2;x_3;.....;x_n\right\}^{đpcm}\)
\(f\left(-2\right)=a.\left(-2\right)^2+b.\left(-2\right)+c\)
\(=4a-2b+c\)
\(f\left(3\right)=a.3^2+b.3+c\)
\(=9a+3b+c\)
\(\Rightarrow f\left(-2\right)+f\left(3\right)=4a-2b+c+9a+3b+c\)
\(=13a+b+2c\)
\(=0\)
\(\Rightarrow f\left(-2\right)=-f\left(3\right)\)
\(\Rightarrow f\left(-2\right).f\left(3\right)\le0\)
phải là Cm nhỏ hơn hoặc bằng 0 mới đúng nha bạn
Mà f(-2) . f(3) phải trong ngoặc ko tưởng nhầm đấy
Học tốt.
hình bạn tự vẽ nha vì muộn rùi!!!!
a, Ta có M là trung điểm của AB (tự chứng minh)
N là trung điểm của AC (tự chứng minh)
Từ trên => MN là đường trung bình của \(\Delta ABC\)(dhnb đường trung bình)
=> \(MN=\frac{1}{2}BC\)(t/c đường trung bình)
=> \(MN=\frac{1}{2}.10=5\left(cm\right)\)
b,Xét \(\Delta AMN\)và \(\Delta ABC\)
Có \(\widehat{A}\)chung
\(\frac{AM}{AB}=\frac{AN}{AC}\left(=\frac{1}{2}\right)\)
Từ trên => 2 tam giác đồng dạng theo TH (c.g.c)