cac phan so 3\4 ;7\14;5\6;5\7 xep theo thu tu tu lon den be
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
hướng dẫn mỗi bài 1 phần
Bài 1:
\(A=\frac{7}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{49.51}\right)\)
\(A=\frac{7}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{49}-\frac{1}{51}\right)\)
\(A=\frac{7}{2}.\left(1-\frac{1}{51}\right)\)
\(A=\frac{7}{2}.\frac{50}{51}\)
\(A=\frac{175}{51}\)
Bài 2:
a) Để A nguyên\(\Leftrightarrow3n-5⋮n+4\)
\(\Leftrightarrow3n+12-17⋮n+4\)
\(\Leftrightarrow3.\left(n+4\right)-17⋮n+4\)
mà \(3.\left(n+4\right)⋮n+4\)
\(\Rightarrow17⋮n+4\)
\(\Rightarrow n+4\inƯ\left(17\right)=\left\{\pm1;\pm17\right\}\)
Lập bảng rùi tìm x
Đặt \(S=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{99}}+\frac{1}{2^{100}}\)
\(\Rightarrow2S=2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{98}}+\frac{1}{2^{99}}\)
\(S=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{98}}+\frac{1}{2^{99}}+\frac{1}{2^{100}}\)
\(\Rightarrow2S-S=S=1-\frac{1}{2^{100}}\)
dien h trong cay chiem
1-1|4-1/6=3/12[s]
\(M=\frac{1}{3^2}+\frac{2}{3^3}+\frac{3}{3^4}+...+\frac{10}{3^{11}}\)
\(\Rightarrow3M=\frac{1}{3}+\frac{2}{3^2}+...+\frac{10}{3^{10}}\)
\(\Rightarrow3M-M=\left(\frac{1}{3}+\frac{2}{3^2}+...+\frac{10}{3^{10}}\right)-\left(\frac{1}{3^2}+\frac{2}{3^3}+...+\frac{10}{3^{11}}\right)\)
\(\Rightarrow2M=\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{10}}-\frac{10}{3^{11}}\)
Đặt \(A=\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{10}}\)
\(\Rightarrow3A=1+\frac{1}{3}+...+\frac{1}{3^9}\)
\(\Rightarrow3A-A=\left(1+\frac{1}{3}+...+\frac{1}{3^9}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{10}}\right)\)
\(\Rightarrow2A=1-\frac{1}{3^{10}}< 1\)
\(\Rightarrow2A< 1\)
\(\Rightarrow A< \frac{1}{2}\)
\(\Rightarrow2M< \frac{1}{2}-\frac{10}{3^{11}}\)
\(\Rightarrow M< \frac{\frac{1}{2}-\frac{10}{3^{11}}}{2}\)
\(\Rightarrow M< \frac{1}{4}-\frac{1}{2.3^{11}}< \frac{1}{4}\)
\(\Rightarrow M< \frac{1}{4}\left(đpcm\right)\)