Phân tích đa thức thành nhân tử
a, 4x4+81
b, 64x4+y4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(ĐKXĐ:x\ne-1\)
\(Q=\frac{2x^2+2}{\left(x+1\right)^2}=\frac{\left(x^2-2x+1\right)+\left(x^2+2x+1\right)}{\left(x+1\right)^2}=\frac{\left(x-1\right)^2+\left(x+1\right)^2}{\left(x+1\right)^2}=\frac{\left(x-1\right)^2}{\left(x+1\right)^2}+1\ge1\forall x\)
Dấu "=" xảy ra khi x - 1 = 0 tức x = 1
Vậy GTNN của Q là 1 khi x = 1
ta có: 2x2 - x + 1 chia hết cho 2x + 1
2x2 + x - 2x - 1 + 2 chia hết cho 2x + 1
x.(2x+1) - (2x+1) + 2 chia hết cho 2x + 1
(x-1).(2x+1) + 2 chia hết cho 2x + 1
mà (x-1).(2x+1) chia hết cho 2x + 1
=> 2 chia hết cho 2x + 1
=> ...
bn tự làm tiếp nha
\(4x\left(x-2007\right)-x+2007=0\)
\(4x\left(x-2007\right)-\left(x-2007\right)=0\)
\(\left(x-2007\right)\left(4x-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-2007=0\\4x-1=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=2007\\x=\frac{1}{4}\end{cases}}\)
Vậy....
\(\frac{x+1}{3x}-x-1\)
\(=\frac{x+1}{3x}-\left(x+1\right)\)
\(=\frac{x+1}{3x}-\frac{3x\left(x+1\right)}{3x}\)
\(=\frac{x+1-3x\left(x+1\right)}{3x}\)
\(=\frac{x+1-3x^2-3x}{3x}\)
\(=\frac{1-3x^2-2x}{3x}\)
\(=\frac{1-3x^2-2x}{3x}\)
Thực hiện phép tính
\(\left(\frac{1}{x^2-9}+\frac{2}{3-x}+\frac{3}{x+3}\right)\div\frac{x-14}{x+3}\)
\(\left(\frac{1}{x^2-9}+\frac{2}{3-x}+\frac{3}{x+3}\right):\frac{x-14}{x+3}\)
\(=\left(\frac{1}{\left(x+3\right)\left(x-3\right)}+\frac{-2}{x-3}+\frac{3}{x+3}\right):\frac{x-14}{x+3}\)
\(=\left(\frac{1}{\left(x+3\right)\left(x-3\right)}+\frac{-2\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}+\frac{3\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}\right).\frac{x+3}{x-14}\)
\(=\left(\frac{1-2x-6+3x-9}{\left(x-3\right)\left(x+3\right)}\right).\frac{x+3}{x-14}=\frac{x-14}{\left(x+3\right)\left(x-3\right)}.\frac{x+3}{x-14}\)
\(=\frac{1}{x-3}\)
\(4x^4+81=\left(2x\right)^2+2.2x^2.9+9^2-36x^2\)
\(=\left(2x^2+9\right)^2-\left(6x\right)^2=\left(2x^2-6x+9\right)\left(2x^2+6x+9\right)\)
\(64x^4+y^4=\left(8x^2\right)^2+2.8x^2.y^2+\left(y^2\right)^2-16x^2y^2\)
\(=\left(8x^2+y^2\right)^2-\left(4xy\right)^2=\left(8x^2-4xy+y^2\right)\left(8x^2+4xy+y^2\right)\)