K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 1 2018

ữdqwdxqwđxưqxwqxqwxđqưdưqx

3 tháng 9 2018

\(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\)

\(=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\)

Đặt    \(t=x^2+7x+11\)

đến đây biến đổi theo t rồi thay trở lại

17 tháng 1 2018

a,b,c thỏa mãn cái j vậy  

17 tháng 1 2018

\(\left(x^4+6x^3\right)+\left(7x^3+42x^2\right)+\left(16x^2+96x\right)+\left(x^3+6x^2\right)+\left(7x^2+42x\right)+\left(16x+96\right)\)

\(x^3\left(x+6\right)+7x^2\left(x+6\right)+16x\left(x+6\right)+x^2\left(x+6\right)+7x\left(x+6\right)+16\left(x+6\right)\)

dến đây bạn tự làm ok

17 tháng 1 2018

Ta có:

\(xy+yz+zx=4xyz\)

\(\Leftrightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=4\)

\(P=\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\)

\(\le\frac{1}{16}\left(\frac{2}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{x}+\frac{2}{y}+\frac{1}{z}+\frac{1}{x}+\frac{1}{y}+\frac{2}{z}\right)\)

\(\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=1\)

17 tháng 1 2018

áp dụng cô si sháp cho 4 số ta được :

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}\ge\frac{16}{a+b+c+d}\)  Luôn đúng , ( tự chứng minh )

\(\frac{1}{16}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}\right)\ge\frac{1}{a+b+c+d}\) luôn luôn đúng

áp dụng vào  P ta được như sau

\(\frac{1}{x+x+y+z}\le\frac{1}{16}\left(\frac{1}{x}+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\) luôn đúng :))

\(\frac{1}{x+y+y+z}\le\frac{1}{16}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{y}+\frac{1}{z}\right)\)

\(\frac{1}{x+y+z+z}\le\frac{1}{16}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{z}\right)\)

Cộng tất cả vào ta được

\(P\le\frac{1}{16}\left(\frac{4}{x}+\frac{4}{y}+\frac{4}{z}\right)\Leftrightarrow P\le\frac{1}{4}\left(x+y+z\right)\)

Thèo đề \(xy+yz+xz=4xyz\Leftrightarrow xy+yz+xz=xyz+xyz+xyz+xyz\)

Tao cũng éo hiểu tại sao nó = nhau được

1 đề sai  , 2 tao sai thế thôi

3 tháng 9 2018

\(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\)

\(=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\)

Đặt    \(t=x^2+7x+11\)

đến đây biến đổi theo t rồi thay trở lại

13 tháng 7 2020

werqwlrkhb nhhrlriphjkh vjq

17 tháng 1 2018

giúp với