giúp em bài này em cảm ơn trc quý thầy cô giáo ạ!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\dfrac{5}{40}+\dfrac{5}{88}+\dfrac{5}{154}+\dfrac{5}{238}+\dfrac{5}{340}\)
\(=\dfrac{5}{5\cdot8}+\dfrac{5}{8\cdot11}+\dfrac{5}{11\cdot14}+\dfrac{5}{14\cdot17}+\dfrac{5}{17\cdot20}\)
\(=\dfrac{5}{3}\left(\dfrac{3}{5\cdot8}+\dfrac{3}{8\cdot11}+\dfrac{3}{11\cdot14}+\dfrac{3}{14\cdot17}+\dfrac{3}{17\cdot20}\right)\)
\(=\dfrac{5}{3}\left(\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+...+\dfrac{1}{17}-\dfrac{1}{20}\right)\)
\(=\dfrac{5}{3}\left(\dfrac{1}{5}-\dfrac{1}{20}\right)=\dfrac{5}{3}\cdot\dfrac{3}{20}=\dfrac{1}{4}\)
\(\dfrac{x+2}{3}=\dfrac{x-4}{5}\)
=>5(x+2)=3(x-4)
=>5x+10=3x-12
=>5x-3x=-12-10
=>2x=-22
=>\(x=-\dfrac{22}{2}=-11\)
\(x+\dfrac{4}{5\cdot9}+\dfrac{4}{9\cdot13}+...+\dfrac{4}{41\cdot45}=\dfrac{29}{45}\)
=>\(x+\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{13}+...+\dfrac{1}{41}-\dfrac{1}{45}=\dfrac{29}{45}\)
=>\(x+\dfrac{1}{5}-\dfrac{1}{45}=\dfrac{29}{45}\)
=>\(x+\dfrac{8}{45}=\dfrac{29}{45}\)
=>\(x=\dfrac{29-8}{45}=\dfrac{21}{45}=\dfrac{7}{15}\)
1: (x-2)(y+3)=11
=>\(\left(x-2\right)\left(y+3\right)=1\cdot11=11\cdot1=\left(-1\right)\cdot\left(-11\right)=\left(-11\right)\cdot\left(-1\right)\)
=>\(\left(x-2;y+3\right)\in\left\{\left(1;11\right);\left(11;1\right);\left(-1;-11\right);\left(-11;-1\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(3;8\right);\left(13;-2\right);\left(1;-14\right);\left(-9;-4\right)\right\}\)
2: \(xy+3x-7y-21=0\)
=>\(x\left(y+3\right)-7\cdot\left(y+3\right)=0\)
=>(y+3)(x-7)=0
=>\(\left\{{}\begin{matrix}x-7=0\\y+3=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=7\\y=-3\end{matrix}\right.\)
1, (y + 3) . (x - 2) = 11
Vì x, y ϵ Z
⇒ (y + 3); (x - 2) ϵ Z
⇒ (y + 3); (x - 2) ϵ Ư(11) = {1; -1; 11; -11}
Lập bảng
y + 3 | 1 | -1 | 11 | -11 |
x - 2 | 11 | -11 | 1 | -1 |
y | -2 | -4 | 8 | -14 |
x | 13 | -9 | 3 | 1 |
Vậy (x; y) ϵ {(13; -2); (-9; -4); (3; 8); (1; -14)}
2, xy + 3x - 7y - 21 = 0
x(y + 3) - (7y + 21) = 0
x(y + 3) - 7(y + 3) = 0
(y + 3)(x - 7) = 0
⇒ y + 3 = 0; x - 7 = 0
y = -3; x = 7
(Bạn có thể tự sửa bài nhá)
Lời giải:
Vì $n,n+1$ là hai số nguyên liên tiếp nên một trong hai số là số chẵn, một số là số lẻ.
$\Rightarrow n(n+1)\vdots 2$
$\Rightarrow n(n+1)(n-10)\vdots 2(1)$
Mặt khác:
Nếu $n$ chia hết cho 3 thì $n(n+1)(n-10)\vdots 3$
Nếu $n$ chia 3 dư 1. Đặt $n=3k+1$ với $k$ nguyên thì $n-10=3k-9=3(k-3)\vdots 3$
$\Rightarrow n(n+1)(n-10)\vdots 3$
Nếu $n$ chia 3 dư 2. Đặt $n=3k+2$ với $k$ nguyên thì $n+1=3k+3=3(k+1)\vdots 3$
$\Rightarrow n(n+1)(n-10)\vdots 3$
Vậy $n(n+1)(n-10)\vdots 3$ với mọi $n$ nguyên (2)
Từ $(1); (2)$ mà $(2,3)=1$ nên $n(n+1)(n-10)\vdots (2.3)$ hay $n(n+1)(n-10)\vdots 6$
a: \(\dfrac{3}{5}+\dfrac{3}{5\cdot9}+...+\dfrac{3}{97\cdot101}\)
\(=\dfrac{3}{4}\left(\dfrac{4}{1\cdot5}+\dfrac{4}{5\cdot9}+...+\dfrac{4}{97\cdot101}\right)\)
\(=\dfrac{3}{4}\left(1-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}+...+\dfrac{1}{97}-\dfrac{1}{101}\right)\)
\(=\dfrac{3}{4}\left(1-\dfrac{1}{101}\right)=\dfrac{3}{4}\cdot\dfrac{100}{101}=\dfrac{75}{101}\)
b: \(\dfrac{1}{18}+\dfrac{1}{54}+\dfrac{1}{108}+...+\dfrac{1}{990}\)
\(=\dfrac{1}{3\cdot6}+\dfrac{1}{6\cdot9}+...+\dfrac{1}{30\cdot33}\)
\(=\dfrac{1}{3}\left(\dfrac{3}{3\cdot6}+\dfrac{3}{6\cdot9}+...+\dfrac{3}{30\cdot33}\right)\)
\(=\dfrac{1}{3}\left(\dfrac{1}{3}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{9}+...+\dfrac{1}{30}-\dfrac{1}{33}\right)\)
\(=\dfrac{1}{3}\cdot\left(\dfrac{1}{3}-\dfrac{1}{33}\right)=\dfrac{1}{3}\cdot\dfrac{10}{33}=\dfrac{10}{99}\)
c: \(\left(\dfrac{1}{2}+1\right)\left(\dfrac{1}{3}+1\right)\cdot...\cdot\left(\dfrac{1}{99}+1\right)\)
\(=\dfrac{3}{2}\cdot\dfrac{4}{3}\cdot...\cdot\dfrac{100}{99}=\dfrac{100}{2}=50\)
d: \(\left(1-\dfrac{1}{7}\right)\left(1-\dfrac{2}{7}\right)\cdot...\cdot\left(1-\dfrac{2014}{7}\right)\)
\(=\left(1-\dfrac{7}{7}\right)\cdot\dfrac{6}{7}\cdot\dfrac{5}{7}\cdot...\cdot\dfrac{-2007}{7}\)
\(=\left(1-1\right)\cdot\dfrac{6}{7}\cdot\dfrac{5}{7}\cdot...\cdot\dfrac{-2007}{7}\)
=0