\(\sqrt{x^2+4x+5}=1\)
Giải pt
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=\(\frac{1}{x+1}-\frac{1}{x+2}\)+\(\frac{1}{x+2}-\frac{1}{x+3}\)+\(\frac{1}{x+3}-\frac{1}{x+4}+\frac{1}{x+4}\)-\(\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+6}\)
=\(\frac{1}{x+1}-\frac{1}{x+6}\)
=\(\frac{x+6-x-1}{\left(x+1\right)\left(x+6\right)}\)
=\(\frac{5}{\left(x+1\right)\left(x+6\right)}\)
Ta có: \(4a^2+b^2=5ab\)
\(\Leftrightarrow\left(4a^2-4ab\right)-\left(ab-b^2\right)=0\)
\(\Leftrightarrow4a\left(a-b\right)-b\left(a-b\right)=0\)
\(\Leftrightarrow\left(a-b\right)\left(4a-b\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a-b=0\\4a-b=0\end{cases}}\).Mà \(2a>b>0\Rightarrow4a>b>0\Rightarrow4a-b>0\)
Do đó \(a-b=0\Leftrightarrow a=b\)
Thay b bởi a,ta có: \(M=\frac{ab}{2a^2-b^2}=\frac{a^2}{2a^2-a^2}=\frac{a^2}{a^2}=1\)
ĐKXĐ : \(a\ne b\)\(;\)\(a\ne-b\)
\(4a^2+b^2=5ab\)
\(\Leftrightarrow\)\(\left(4a^2-4ab\right)-\left(ab-b^2\right)=0\)
\(\Leftrightarrow\)\(4a\left(a-b\right)-b\left(a-b\right)=0\)
\(\Leftrightarrow\)\(\left(a-b\right)\left(4a-b\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}a-b=0\\4a-b=0\end{cases}\Leftrightarrow\orbr{\begin{cases}a=b\left(loai\right)\\4a=b\end{cases}}}\)
\(\Rightarrow\)\(4a=b\)
\(\Rightarrow\)\(M=\frac{ab}{a^2-b^2}=\frac{a.4a}{\left(a-b\right)\left(a+b\right)}=\frac{4a^2}{\left(a-4a\right)\left(a+4a\right)}=\frac{4a^2}{-15a^2}=\frac{-4}{15}\)
...
\(\sqrt{x^2+4x+5}=1\)
\(\Rightarrow\sqrt{x^2+4x+5}=\sqrt{1}\)
\(\Rightarrow x^2+4x+5=1\)
\(\Rightarrow x.x+2x+2x+4=0\left(\text{cùng bớt đi 1}\right)\)
\(\Rightarrow x\left(2+x\right)+2\left(x+2\right)=0\)
\(\Rightarrow\left(2+x\right)\left(2+x\right)=0\)
\(\Rightarrow\left(2+x\right)^2=0^2\)
\(\Rightarrow2+x=0\)
\(\Rightarrow x=0-2\)
\(\Rightarrow x=-2\)
\(\sqrt{x^2+4x+5}=1\)
\(\Rightarrow\sqrt{x^2+4x+5}=\sqrt{1}\)
\(\Rightarrow x^2+4x+5=1\)