Cho \(S=2.1+2.3+2.3^2+...+2.3^{2020}\). Tìm chữ số tận cùng của \(S\).
Mấy bạn giỏi Toán giúp mình với ạ. :<<
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
Chiều cao thửa ruộng đó là : 24 x 3/4 = 18 ( m )
Diện tích thửa ruộng đó là : 24 x 18 = 432 ( m2 )
Mỗi mét vuông thu hoạch đc số thóc là : 6 : 4 = 1,5 ( kg )
Cả thửa ruộng thu hoạch đc số thóc là : 1,5 x 432 = 648 ( kg)
Đáp số : 648 kg thóc
Học tốt!!!
Bài giải
Chiều cao thửa ruộng là :
\(28\div4\times3=21\left(m\right).\)
Diện tích thửa ruộng là :
\(28\times21=588\left(m^2\right).\)
588m2 gấp 6m2 số lần là :
\(588\div6=98\left(\text{lần}\right).\)
Số kg thóc thu được là :
\(98\times4=392\left(\text{kg thóc}\right).\)
Đáp số : 392 kg thóc.
Bài 1.
2n2( n + 1 ) - 2n( n2 + n - 3 )
= 2n3 + 2n2 - 2n3 - 2nn + 6n
= 6n \(⋮6\forall n\inℤ\)( đpcm )
Bài 2.
P = ( m2 - 2m + 4 )( m + 2 ) - m3 + ( m + 3 )( m - 3 ) - m2 - 18
P = m3 + 8 - m3 + m2 - 9 - m2 - 18
P = 8 - 9 - 18 = -19
=> P không phụ thuộc vào biến M ( đpcm )
Xem hình bs 22. Rõ ràng hai đường thẳng Ot và Oy cắt nhau tại điểm O. Do góc xOy và góc yOz là hai góc kề bù nên:
∠yOz = 180° - ∠yOx = 150°.
Vì tia Ot nằm giữa hai tia Oz và Oy nên ∠yOt + ∠tOz = ∠yOz, suy ra
∠yOt = ∠yOz - ∠tOz = 150° - 60° = 90°.
Vậy hai đường thẳng chứa tia Ot và Oy vuông góc với nhau.
Có góc xOy+ góc yOz = 180 độ ( 2 góc kề bù)
mà góc xOy = 30 độ (gt)
=> góc yOz=180 độ - 30 độ = 150 độ
Có góc zOt + góc tOy = góc yOz
mà góc yOz = 150 độ (cmt)
góc zOt= 60 độ (gt)
=> 60 độ + góc tOy= 150 độ
=> góc tOy = 150độ - 60 độ = 90 độ
=> Ot vuông góc vs Oy
vậy đường thẳng chứa tia Ot và đường thẳng chứa tia Oy vuông góc với nhau
A = {0;1;2;3;4;5;6;7;8;9}
B = {S,A,P}
C = {1;3;5;7;9}
D = {C,O,A,L}
\(\frac{1}{5\cdot8}+\frac{1}{8\cdot11}+...+\frac{1}{x\left(x+3\right)}=\frac{1}{6}\)
\(\Leftrightarrow\frac{1}{3}\left(\frac{3}{5\cdot8}+\frac{3}{8\cdot11}+...+\frac{3}{x\left(x+3\right)}\right)=\frac{1}{6}\)
\(\Leftrightarrow\frac{1}{3}\left(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{x}-\frac{1}{x+3}\right)=\frac{1}{6}\)
\(\Leftrightarrow\frac{1}{3}\left(\frac{1}{5}-\frac{1}{x+3}\right)=\frac{1}{6}\)
\(\Leftrightarrow\frac{1}{5}-\frac{1}{x+3}=\frac{1}{2}\)
\(\Leftrightarrow\frac{1}{x+3}=-\frac{3}{10}\)
\(\Leftrightarrow1\cdot10=-3\left(x+3\right)\)
\(\Leftrightarrow10=-3x-9\)
\(\Leftrightarrow10+9=-3x\)
\(\Leftrightarrow19=-3x\)
\(\Leftrightarrow x=-\frac{19}{3}\)
Đề sai à -.-
\(\frac{1}{5\cdot8}+\frac{1}{8\cdot11}+...+\frac{1}{x\left(x+3\right)}=\frac{1}{6}\)
=> \(\frac{1}{3}\left(\frac{3}{5\cdot8}+\frac{3}{8\cdot11}+...+\frac{3}{x\left(x+3\right)}\right)=\frac{1}{6}\)
=> \(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{x}-\frac{1}{x+3}=\frac{1}{6}:\frac{1}{3}\)
=> \(\frac{1}{5}-\frac{1}{x+3}=\frac{1}{6}\cdot3=\frac{1}{2}\)
=> \(\frac{1}{x+3}=\frac{1}{5}-\frac{1}{2}=-\frac{3}{10}\)
=> \(10=-3\left(x+3\right)\)
=> 10 = -9x - 9
=> 10 + 9x + 9 = 0
=> 19 + 9x = 0
=> 9x = -19
=> x = -19/9
( 3x + 1 )2 + ( x + 1 )2 = 10( x - 1 )( x + 1 )
<=> 9x2 + 6x + 1 + x2 + 2x + 1 = 10( x2 - 1 )
<=> 10x2 + 8x + 2 = 10x2 - 10
<=> 10x2 + 8x - 10x2 = -10 - 2
<=> 8x = -12
<=> x = -12/8 = -3/2
c. => 9x2 + 6x + 1 + x2 + 2x + 1 = 10 . ( x2 - 1 )
=> 10x2 + 8x + 2 = 10x2 - 10
=> 10x2 + 8x + 2 - 10x2 + 10 = 0
=> 8x + 12 = 0
=> 8x = 12
=> x = 3/2
\(S=2\cdot1+2\cdot3+2\cdot3^2+...+2\cdot3^{2020}\)
\(S=2\left(1+3+3^2+...+3^{2020}\right)\)
Đặt \(A=1+3+3^2+...+3^{2020}\)
\(\Rightarrow3A=3\left(1+3+3^2+...+3^{2020}\right)\)
\(3A=3+3^2+3^3+...+3^{2021}\)
\(2A=3A-A\)
\(2A=3+3^2+3^3+...+3^{2021}-\left(1+3+3^2+3^3+...+3^{2020}\right)\)
\(2A=3+3^2+3^3+...+3^{2021}-1-3-3^2-3^3-...-3^{2020}\)
\(2A=3^{2021}-1\)
\(\Rightarrow A=\frac{3^{2021}-1}{2}\)
Thế vào S ta được :
\(S=2\cdot\frac{3^{2021}-1}{2}=3^{2021}-1\)
Đến đây em chịu xD Nhờ các cao nhân giải tiếp ạ ;-;
Giải tiếp phần của bạn Quỳnh nhé!
Xét dãy chữ số tận cùng của \(3^{2021}\) : \(3;9;7;1;3;9;7;1;...\)
Cứ 4 số thành một nhóm và lập lại như vậy. Có \(2021\div4=505\) ( dư 1 )
Vì dư 1 nên số thứ nhất trong nhóm dãy chữ số tận cùng là số tận cùng của S + 1.
Vậy chữ số tận cùng của S là 3 - 1 = 2.