Cho các số nguyên dương a,b thỏa mãn a²+b²+2(ab+a-b) là số chính phương. Chứng minh rằng a=b
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
8 tháng 5 2019
1. A=\(\frac{x^2-1}{x^2+1}\)
=> A=\(\frac{x^2+1-2}{x^2+1}\)=1-\(\frac{2}{x^2+1}\)
để A đạt GTNN thì \(\frac{2}{x^2+1}\)đạt GTLN khi đó (x2+1) đạt GTNN
mà x2+1>=1 suy ra x2+1 đạt GTNN là 1 khĩ=0.
khi đó A đạt GTLN là A=1-\(\frac{2}{0^2+1}\)=1-2=-1 . khi x=0
8 tháng 5 2019
Đặt \(A=\left|x+2017\right|+\left|x-2\right|\)
\(=\left|x+2017\right|+\left|2-x\right|\)
\(\ge\left|x+2017+2-x\right|\)
\(=2019\)
Dấu bằng xảy ra khi và chỉ khi:\(-2017\le x\le2\)
\(\Rightarrow B=\frac{1}{\left|x+2017\right|+\left|x-2\right|}\le\frac{1}{2019}\)
Vậy \(B_{max}=\frac{1}{2019}\Leftrightarrow-2017\le x\le2\)
LN
26
TA
13
TT
1
8 tháng 5 2019
ta có (a2 +b2)/2>=ab
<=> a2+b2>=2ab
<=> a2+b2-2ab>=0
<=>(a-b)2>=0 ( luôn đúng ) => đpcm
BB
0
K
4
EA
9
Đặt k=a2+b2ab+1(k∈Z)k=a2+b2ab+1(k∈Z)
Giả sử kk không là số chính phương
Cố định số nguyên dương kk, sẽ tồn tại cặp (a,b)(a,b) . Ta kí hiệu
S={(a,b)∈NxN|a2+b2ab+1=k}S={(a,b)∈NxN|a2+b2ab+1=k}
Theo nguyên lí cực hạn thì các cặp thuộc SS tồn tại (A,B)(A,B) sao cho A+BA+B đạt min
Giả sử A≥B>0A≥B>0 . Cố định BB ta còn số nữa khác AA thảo phương trình k=x+B2xB+1k=x+B2xB+1
⇔x2−kBx+B2−k=0⇔x2−kBx+B2−k=0 phương trình có nghiệm AA
Theo Viet : {A+x2=kBA.x2=B2−k{A+x2=kBA.x2=B2−k
Suy ra x2=kB−A=B2−kAx2=kB−A=B2−kA
Dễ thấy x2x2 nguyên.
Nếu x2<0x2<0 thì x22−kBx2+B2−k≥x22+k+B2−k>0x22−kBx2+B2−k≥x22+k+B2−k>0 (vô lí) . Suy ra x2≥0x2≥0 do đó (x2,B)∈S(x2,B)∈S
Do A≥B>0⇒x2=B2−kA<A2−kA<AA≥B>0⇒x2=B2−kA<A2−kA<A
Suy ra x2+B<A+Bx2+B<A+B (trái với giả sử A+BA+B đạt min)
Suy ra kk là số chính phương