Câu 3 : Cho \(a,b,c\in Z^+\) đôi một khác nhau và đồng thoả mãn :
1. a là ước số của : b+c+bc
2. b là ước số của : a+c+ac
3. c là ước số của : a+b+ab
Chứng minh rằng : a,b,c không đồng thời là số nguyên tố.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/
\(sđ\widehat{ACO}=\dfrac{1}{2}\left(sđcungAD-sđcungBE\right)\) (góc có đỉnh ngoài hình tròn)
\(\Rightarrow sđ\widehat{ACO}=\dfrac{1}{2}sđcungAD-\dfrac{1}{2}sđcungBE\) (1)
Ta có
\(sđ\widehat{AOD}=sđcungAD\) (Góc có đỉnh là tâm đường tròn)
\(\Rightarrow\dfrac{1}{2}sđcungAD=\dfrac{1}{2}sđ\widehat{AOD}\) (2)
Ta có
BC = OB = R => tg BOC cân tại B \(\Rightarrow\widehat{ACO}=\widehat{BOE}\) (góc ở đáy tg cân)
\(sđ\widehat{BOE}=sđcungBE\) (Góc có đỉnh là tâm đường tròn)
\(\Rightarrow\dfrac{1}{2}sđ\widehat{ACO}=\dfrac{1}{2}sđ\widehat{BOE}=\dfrac{1}{2}sđcungBE\) (3)
Thay (2) và (3) vào (1)
\(\Rightarrow sđ\widehat{ACO}=\dfrac{1}{2}sđ\widehat{AOD}-\dfrac{1}{2}sđ\widehat{ACO}\)
\(\Rightarrow2.sđ\widehat{ACO}=sđ\widehat{AOD}-sđ\widehat{ACO}\)
\(\Rightarrow sđ\widehat{AOD}=3.sđ\widehat{ACO}\)
b/
Ta có
AB = R = OA = OB => tg OAB là tg đều
\(\Rightarrow\widehat{OAB}=\widehat{OBA}=60^o\)
\(\Rightarrow\widehat{OBC}=180^o-\widehat{OBA}=180^o-60^o=120^o\)
Xét tg cân BOC có
\(\widehat{BCO}+\widehat{BOC}=180^o-\widehat{OBC}=180^o-120^o=60^o\)
Mà \(\widehat{BCO}=\widehat{BOC}\) (góc ở đáy tg cân)
\(\Rightarrow\widehat{BCO}=\widehat{BOC}=30^o\)
Xét tg AOC có
\(\widehat{AOC}=180^o-\left(\widehat{OAB}+\widehat{BOC}\right)=180^o-\left(60^o+30^o\right)=90^o\)
=> tg AOC vuông tại O
AC = AB + BC = 2R
\(\Rightarrow CO=\sqrt{AC^2-OA^2}=\sqrt{4R^2-R^2}=R\sqrt{3}\)