K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 8 2020

Bài làm:

Ta có: \(\left(2x-5\right)\left(x^3+1\right)-\left(2x-5\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left(2x-5\right)\left(x+1\right)\left(x^2-x+1\right)-\left(2x-5\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left(2x-5\right)\left(x+1\right)\left(x^2-x-1\right)=0\)

\(\Leftrightarrow x\left(x-1\right)\left(x+1\right)\left(2x-5\right)=0\)

GPT này ra ta được: \(x\in\left\{-1;0;1;\frac{5}{2}\right\}\)

16 tháng 8 2020

\(\left(2x-5\right)\left(x^3+1\right)-\left(2x-5\right)\left(x+1\right)=0\)

\(\Leftrightarrow2x^4+2x-5x^3-5-\left(2x^2+2x-5x-5\right)=0\)

\(\Leftrightarrow2x^4+2x-5x^3-5-2x^2-2x+5x+5=0\)

\(\Leftrightarrow2x^4+5x-5x^3-2x^2=0\)

\(\Leftrightarrow x\left(2x^3+5-5x^2-2x\right)=0\)

\(\Leftrightarrow x=0;\frac{5}{2};\pm1\)

16 tháng 8 2020

Bài 1:

a) \(\hept{\begin{cases}\left(x-\frac{2}{5}\right)^{2010}\ge0\left(\forall x\right)\\\left(y+\frac{3}{7}\right)^{468}\ge0\left(\forall y\right)\end{cases}}\Rightarrow\left(x-\frac{2}{5}\right)^{2010}+\left(y+\frac{3}{7}\right)^{468}\ge0\left(\forall x,y\right)\)

Kết hợp với đề bài, dấu "=" xảy ra khi:

\(\hept{\begin{cases}\left(x-\frac{2}{5}\right)^{2010}=0\\\left(y+\frac{3}{7}\right)^{468}=0\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{2}{5}\\y=-\frac{3}{7}\end{cases}}\)

b) \(\hept{\begin{cases}\left(x+0,7\right)^{84}\ge0\left(\forall x\right)\\\left(y-6,3\right)^{262}\ge0\left(\forall y\right)\end{cases}\Rightarrow}\left(x+0,7\right)^{84}+\left(y-6,3\right)^{262}\ge0\left(\forall x,y\right)\)

Kết hợp với đề bài, dấu "=" xảy ra khi:

\(\hept{\begin{cases}\left(x+0,7\right)^{84}=0\\\left(y-6,3\right)^{262}=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-0,7\\y=6,3\end{cases}}\)

c) \(\hept{\begin{cases}\left(x-5\right)^{88}\ge0\left(\forall x\right)\\\left(x+y+3\right)^{496}\ge0\left(\forall x,y\right)\end{cases}\Rightarrow}\left(x-5\right)^{88}+\left(x+y+3\right)^{496}\ge0\left(\forall x,y\right)\)

Kết hợp với đề bài, dấu "=" xảy ra khi:

\(\hept{\begin{cases}\left(x-5\right)^{88}=0\\\left(x+y+3\right)^{496}=0\end{cases}}\Rightarrow\hept{\begin{cases}x=5\\y=-8\end{cases}}\)

16 tháng 8 2020

Bài 2:

Theo giả thiết ta có thể suy ra: \(x>y\)

Ta có: \(2^x-2^y=224\)

\(\Leftrightarrow2^y\left(2^{x-y}-1\right)=224=32.7=2^5.7\)

Mà \(2^{x-y}-1\) luôn lẻ với mọi x,y nguyên

=> \(\hept{\begin{cases}2^{x-y}-1=7\\2^y=2^5\end{cases}\Leftrightarrow}\hept{\begin{cases}2^{x-y}=8=2^3\\y=5\end{cases}}\Leftrightarrow\hept{\begin{cases}x=8\\y=5\end{cases}}\)

16 tháng 8 2020

= (1/67+1/967+1/1967)x0=0

16 tháng 8 2020

1/2-1/3-1/6 kết quả là bằng 0 bn nhé. mình chúc bạn học tốt nhé !

16 tháng 8 2020

Tham khảo cách chứng minh "Bổ đề hình thang":

http://vuontoanhoc.blogspot.com/2016/06/hinh-hoc-8-bo-e-hinh-thang.html

16 tháng 8 2020

a) A = (x - 1)^2 + |2y - 1| + 5.

Ta có: (x - 1)^2 là số chính phương => (x - 1)^2 >= 0 với mọi x; |2y - 1| >= 0 với mọi y.

=> A = (x - 1)^2 + |2y - 1| + 5 >= 0 + 0 + 5 = 5. => A >= 5

Vậy GTNN của A là 5. Dấu "=" xảy ra <=> x = 1; y = 1/2.

b) B = x + |x - 20| + 80.

Ta có: B = x + |x - 20| + 80 = x + |20 - x| + 80 >= x + (20 - x) + 80 = 20 + 80 = 100. => B >= 100.

Vậy GTNN của B là 100. Dấu "=" xảy ra <=> x = 0 hoặc x = 10 hoặc x = 20.

Nếu như đề bài bảo tìm GTNN của biểu thức thì bạn tìm xem biểu thức đó >= bao nhiêu, và giá trị đó sẽ là GTNN của biểu thức. Còn nếu như đề bài bảo tìm GTLN của biểu thức thì bạn làm ngược lại.

16 tháng 8 2020

a. Vì \(\left(x-1\right)^2\ge0\forall x\)\(\left|2y-1\right|\ge0\forall y\)

\(\Rightarrow\left(x-1\right)^2+\left|2y-1\right|\ge0\forall x;y\)

\(\Rightarrow\left(x-1\right)^2+\left|2y-1\right|+5\ge5\)

Dấu "=" xảy ra \(\Leftrightarrow\orbr{\begin{cases}\left(x-1\right)^2=0\\\left|2y-1\right|=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x-1=0\\2y-1=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=1\\y=\frac{1}{2}\end{cases}}}\)

Vậy Amin = 5 <=> x = 1 ; y = 1/2

b.

+) Nếu  \(x\ge20\)

\(\Rightarrow B=x+\left|x-20\right|+80=x+x-20+80=2x+60\ge100\)

Dấu "=" xảy ra \(\Leftrightarrow2x=40\Leftrightarrow x=20\left(tm\right)\)

+) Nếu \(x< 20\)

\(\Rightarrow B=x+\left|x-20\right|+80=x+\left[-\left(x-20\right)\right]+80\)

\(\Rightarrow B=x-x+20+80=100\)

Vậy Bmin = 100 \(\Leftrightarrow x\le20\)

16 tháng 8 2020

Bài làm:

a) \(\left|\frac{1}{2}x-\frac{5}{2}\right|-1=-\frac{1}{2}\)

\(\Leftrightarrow\left|\frac{1}{2}x-\frac{5}{2}\right|=\frac{1}{2}\)

\(\Leftrightarrow\orbr{\begin{cases}\frac{1}{2}x-\frac{5}{2}=\frac{1}{2}\\\frac{1}{2}x-\frac{5}{2}=-\frac{1}{2}\end{cases}}\Leftrightarrow\orbr{\begin{cases}\frac{1}{2}x=3\\\frac{1}{2}x=2\end{cases}}\Rightarrow\orbr{\begin{cases}x=6\\x=4\end{cases}}\)

+ Nếu x = 6

\(\left|12-\frac{1}{3}y\right|=\frac{5}{6}\)

\(\Leftrightarrow\orbr{\begin{cases}12-\frac{1}{3}y=\frac{5}{6}\\12-\frac{1}{3}y=-\frac{5}{6}\end{cases}}\Leftrightarrow\orbr{\begin{cases}\frac{1}{3}y=\frac{67}{6}\\\frac{1}{3}y=\frac{77}{6}\end{cases}}\Rightarrow\orbr{\begin{cases}y=\frac{67}{2}\\y=\frac{77}{2}\end{cases}}\)

+ Nếu x = 4

\(\left|8-\frac{1}{3}y\right|=\frac{5}{6}\)

\(\Leftrightarrow\orbr{\begin{cases}8-\frac{1}{3}y=\frac{5}{6}\\8-\frac{1}{3}y=-\frac{5}{6}\end{cases}}\Leftrightarrow\orbr{\begin{cases}\frac{1}{3}y=\frac{43}{6}\\\frac{1}{3}y=\frac{53}{6}\end{cases}}\Rightarrow\orbr{\begin{cases}y=\frac{43}{2}\\y=\frac{53}{2}\end{cases}}\)

Vậy ta có 4 cặp số (x;y) thỏa mãn: \(\left(6;\frac{67}{2}\right);\left(6;\frac{77}{2}\right);\left(4;\frac{43}{2}\right);\left(4;\frac{53}{2}\right)\)

16 tháng 8 2020

b) \(\frac{3}{2}x-\frac{1}{2}\left(x-\frac{2}{3}\right)=\frac{5}{3}\)

\(\Leftrightarrow\frac{3}{2}x-\frac{1}{2}x+\frac{1}{3}=\frac{5}{3}\)

\(\Leftrightarrow x=\frac{4}{3}\)

Thay vào ta được:

\(\frac{2.\frac{4}{3}+y}{\frac{4}{3}-2y}=\frac{5}{4}\)

\(\Leftrightarrow\frac{32}{3}+4y=\frac{20}{3}-10y\)

\(\Leftrightarrow14y=-4\)

\(\Rightarrow y=-\frac{2}{7}\)

Vậy ta có 1 cặp số (x;y) thỏa mãn: \(\left(\frac{4}{3};-\frac{2}{7}\right)\)

16 tháng 8 2020

Ta có:1+2+3+4+...+x=240

Ta thấy tổng trên gồm dãy các số tự nhiên cách đều nhau 1 đơn vị

1+2+3+4+...+x=240,suy ra:x.(x+1)÷2=240

Dãy số trên gồm các số tự nhiên cách đều nhau 1 đơn vị nên 240=15×16

Suy ra:x=15(thỏa mãn điều kiện x thuộc N)

Vậy:x=15

ks nhé!Học tốt!:))

16 tháng 8 2020

Mình thấy đề bài hơi sai :V

Theo quy luật thì x phải là 1 số tự nhiên.

Dãy số trên có x số, các số hạng hơn kém nhau 1 đơn vị nên công thức tính tổng của các số đó là: x.(x + 1) : 2 = 240.

=> x.(x + 1) = 480. Mà 480 lại không phải là tích của 2 số tự nhiên liên tiếp. => Không tìm được x (khi x là số tự nhiên).

Vậy nên mình nghĩ là bài này không có đáp số đâu.

Cậu thử hỏi lại giáo viên của mình nhé.

16 tháng 8 2020

\(y+1\frac{21}{22}=2\frac{43}{44}\Rightarrow y+\frac{43}{22}=\frac{131}{44}\Rightarrow y=\frac{131}{44}-\frac{86}{44}\Rightarrow y=\frac{45}{44}\)

16 tháng 8 2020

\(y+1\frac{21}{22}=2\frac{43}{44}\)

\(y+\frac{43}{22}=\frac{131}{44}\)

y               \(=\)\(\frac{131}{44}-\frac{43}{22}=\frac{45}{44}\)

16 tháng 8 2020

a) Xét \(\Delta ABC\)có :

AH là đường cao đồng thời là đường trung trực( AH \(\perp\)BD , BH = HD )

\(\Rightarrow\)\(\Delta ABC\)cân tại A

16 tháng 8 2020

1. a. \(3^{2010}=\left(3^2\right)^{1005}=9^{1005}\)

Vì \(9^{1005}< 10^{1005}\)

nên \(3^{2010}< 10^{1005}\)

b. Ta có :

\(3^{2010}=3.3.3.3....3\)( 2010 chữ số 3 )

\(\Rightarrow3^{2010}=\left(3.3\right)\left(3.3\right)\left(3.3\right)...\left(3.3\right)=9.9.9.9...9\)( 1005 chữ số 9 )

Xét \(9.9.9...9.9< 9.10.10.10...10=90000...00\) ( 1004 chữ số 0 và 1 chữ số 9 ). Nghĩa là có 1005 chữ số

Vậy \(3^{2010}\) có ít hơn 1006 chữ số

16 tháng 8 2020

1.a)Ta có 32010 = (32)1005 = 91005 < 101005 

=> 32010 < 101005

b) Vì 32010 < 101005 (cmt)

mà 101005 là số có 1005 chữ số 

=> 32010 là số có ít hơn 1006 chữ số 

2. a) Ta có 333444 = (3.111)444 = 3444.111444 = (34)111 . 111444 = 81111.111444 > 8111. 111444 

=> 333444 > 8111. 111444

b) Ta có 333444 (3.111)444 = 3444.111444 = (34)111.111444 = 81111.111444 (1)

Lại có 444333 = (4.111)333 = 4333.111333 = (43)111.111333 = 64111.111333 (2)

Từ (1)(2) => 333444 > 444333