Tìm chữ số thích hợp:
a, abc + ab + a = 340
b, abcd + abc + ab + a = 2230
c, abcd + a + b + c + d = 1990
d, bab - ab1 = 194
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TA XÉT: \(\left(a+b+c\right)\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)\) (*)
\(=\frac{a^2}{b+c}+\frac{ab}{c+a}+\frac{ac}{a+b}+\frac{ab}{b+c}+\frac{b^2}{c+a}+\frac{bc}{a+b}+\frac{ca}{b+c}+\frac{cb}{c+a}+\frac{c^2}{a+b}\)
\(=\left(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\right)+\frac{c\left(a+b\right)}{a+b}+\frac{a\left(b+c\right)}{b+c}+\frac{b\left(c+a\right)}{c+a}\)
\(=\left(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\right)+\left(a+b+c\right)\)
TỪ (*) VÀ DO: \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=1\)
=> \(1\left(a+b+c\right)=\left(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\right)+\left(a+b+c\right)\)
<=> \(a+b+c=\left(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\right)+\left(a+b+c\right)\)
<=> \(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}=0\)
=> TA CÓ ĐPCM.
Ta có: \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=1\)
\(\Rightarrow\left(a+b+c\right)\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)=a+b+c\)
\(\Leftrightarrow\frac{a^2}{b+c}+\frac{ab}{b+c}+\frac{ac}{a+c}+\frac{b^2}{c+a}+\frac{ab}{c+a}+\frac{bc}{c+a}+\frac{c^2}{a+b}+\frac{ac}{a+b}+\frac{bc}{a+b}=a+b+c\)
\(\Leftrightarrow\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}+\frac{a\left(b+c\right)}{b+c}+\frac{b\left(c+a\right)}{c+a}+\frac{c\left(a+b\right)}{a+b}=a+b+c\)
\(\Leftrightarrow\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}+a+b+c=a+b+c\)
\(\Leftrightarrow\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}=0\)( ĐPCM )
a. \(C=\frac{2x-1}{x+2}=\frac{2x+4-5}{x+2}=2-\frac{5}{x+2}\)
Vì C thuộc Z nên 5 / x + 2 thuộc Z
=> x + 2 thuộc { - 5 ; - 1 ; 1 ; 5 }
=> x thuộc { - 7 ; - 3 ; - 1 ; 3 } ( tm x thuộc Z )
c. \(D=\frac{x^2-2x+1}{x+1}=\frac{x\left(x+1\right)-3x+1}{x+1}=x-\frac{3x+3-2}{x+1}=x-3-\frac{2}{x+1}\)
Vì D thuộc Z nên 2 / x + 1 thuộc Z và x thuộc Z
=> x + 1 thuộc { - 2 ; - 1 ; 1 ; 2 }
=> x thuộc { - 3 ; - 2 ; 0 ; 1 } ( tm x thuộc Z )
c. Để C và D cũng nguyên bới một giá trị x thì x = - 3
Câu 4: Câu ghép: "Mặt trời chưa xuất hiện nhưng tầng tầng lớp lớp bụi hồng ánh sáng đã tràn lan khắp không gian như thoa phấn trên những tòa nhà cao tầng của thành phố, khiến chúng trở nên nguy nga, đậm nét.” có mấy vế câu?
A. Hai vế câu.
B. Ba vế câu.
C. Bốn vế câu.
D. Năm vế câu.
P.T :
Các chủ ngữ : Mặt trời , tầng tầng lớp lớp bụi hồng ánh sáng , chúng .
Các vị ngữ : chưa xuất hiện , đã tràn lan khắp không gian như thoa phấn trên những tòa nhà cao tầng của thành phố ,trở nên nguy nga.
a)
pt <=> \(\left(2x+\frac{1}{x}\right)^2+3=4\left(2x+\frac{1}{x}\right)\)
<=> \(\left(2x+\frac{1}{x}-1\right)\left(2x+\frac{1}{x}-3\right)=0\)
<=> \(\orbr{\begin{cases}2x+\frac{1}{x}=1\\2x+\frac{1}{x}=3\end{cases}}\)
<=> \(\orbr{\begin{cases}2x^2+1=x\\2x^2+1=3x\end{cases}}\)
<=> \(\orbr{\begin{cases}4x^2-2x+2=0\\\left(x-1\right)\left(2x-1\right)=0\end{cases}}\)
<=> \(\orbr{\begin{cases}\left(2x-1\right)^2+1=0\left(1\right)\\\left(x-1\right)\left(2x-1\right)=0\left(2\right)\end{cases}}\)
CÓ: \(\left(2x-1\right)^2+1\ge1>0\forall x\)
=> PT (1) VÔ NGHIỆM
PT (2) <=> \(\orbr{\begin{cases}x=1\\x=\frac{1}{2}\end{cases}}\)
b)
pt <=> \(\left(x+\frac{1}{x}\right)\left(x^2+\frac{1}{x^2}-1\right)=13\left(x+\frac{1}{x}\right)\)
<=> \(\left(x+\frac{1}{x}\right)\left(x^2+\frac{1}{x^2}-1-13\right)=0\)
<=> \(\orbr{\begin{cases}x^2+1=x\\x^2+\frac{1}{x^2}=14\end{cases}}\)
<=> \(\orbr{\begin{cases}\left(x-\frac{1}{2}\right)^2+\frac{3}{4}=0\left(1\right)\\x^4+1=14x^2\left(2\right)\end{cases}}\)
DO: \(\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\forall x\)
=> PT (1) VÔ NGHIỆM.
PT (2) <=> \(a^2+1=14a\) ( \(a=x^2\))
<=> \(\orbr{\begin{cases}a=7+4\sqrt{3}\\a=7-4\sqrt{3}\end{cases}}\)
=> \(\orbr{\begin{cases}x^2=\left(\sqrt{3}+2\right)^2\\x^2=\left(2-\sqrt{3}\right)^2\end{cases}}\)
=> \(x=\left\{\sqrt{3}+2;-\sqrt{3}-2;2-\sqrt{3}\right\}\)
\(\left(4\right)your\)
\(\left(5\right)stars\)
\(\left(6\right)finishes\)
để ý rằng nếu x là nghiệm thì x\(\ne\)0 nên ta chia cả tử số và mẫu số của vế trái cho x thì ta thu được \(\frac{12}{x+4+\frac{2}{x}}-\frac{3}{x+2+\frac{2}{x}}=1\)đặt \(t=x+\frac{2}{x}+2\)thì phương trình trở thành
\(\frac{12}{t+2}-\frac{3}{t}=1\Leftrightarrow12t-3t-6=t^2+2t\Leftrightarrow t^2-7t+6=0\Leftrightarrow\orbr{\begin{cases}t=1\\t=6\end{cases}}\)
với t=1 ta có \(x+\frac{2}{x}+2=1\Leftrightarrow t^2+t+2=0\)(vô nghiệm)
với t=6 ta có \(x+\frac{x}{2}+2=6\Leftrightarrow x^2-4x+2=0\Leftrightarrow x=2\pm\sqrt{2}\)
Giả sử ta có một phương tiện C xuất phát cùng thời điểm từ A với vận tốc bằng vận tốc trung bình của xe đạp và xe máy, khi đó C luôn luôn ở giữa xe đạp và xe máy
Vận tốc của C là
(10+30):2=20 km/h
Vấn đề đặt ra là ta tìm thời điểm ô tô gặp C thì đó chính là thời điểm ô tô ở giữa xe đạp và xe máy.
Trong cùng 1 khoảng thời gian thì vận tốc tỷ lệ thuận với quãng đường đi được
\(\frac{V_C}{V_{oto}}=\frac{S_C}{S_{oto}}=\frac{20}{60}=\frac{1}{3}\)
Quãng đường ôt tô đi đến điểm gặp nhau với C hay o tô ở giữa xe đạp và xe máy là
[120:(1+3)]x3=90 km
Thời gian ô tô ở giữa xe đạp và xe máy là
90:60=1,5 giờ
\(a.a=3,b=0,c=7\)
\(b.a=2,b=0,c=0,d=8\)
\(c.a=1,b=9,c=6,d=7\)
\(d.a,b\in\left\{\varnothing\right\}\) (tức là không có số nào thỏa mãn đề bài)
49/60= 1/60+1/60+1/60+1/60+.....+1/60.
Vì 1/60 > 1/11; 1/60>1/12;... nên 1/11+1/12+1/13+1/14+...+1/25 > 1/60