K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 8 2020

\(a.a=3,b=0,c=7\)

\(b.a=2,b=0,c=0,d=8\)

\(c.a=1,b=9,c=6,d=7\)

\(d.a,b\in\left\{\varnothing\right\}\) (tức là không có số nào thỏa mãn đề bài)

14 tháng 9 2020

49/60= 1/60+1/60+1/60+1/60+.....+1/60.

Vì 1/60 > 1/11; 1/60>1/12;... nên 1/11+1/12+1/13+1/14+...+1/25 > 1/60

16 tháng 8 2020

kết quả là 190 nha bạn

16 tháng 8 2020

190 bạn nha !!!~~~

16 tháng 8 2020

TA XÉT:     \(\left(a+b+c\right)\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)\)      (*)

\(=\frac{a^2}{b+c}+\frac{ab}{c+a}+\frac{ac}{a+b}+\frac{ab}{b+c}+\frac{b^2}{c+a}+\frac{bc}{a+b}+\frac{ca}{b+c}+\frac{cb}{c+a}+\frac{c^2}{a+b}\)

\(=\left(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\right)+\frac{c\left(a+b\right)}{a+b}+\frac{a\left(b+c\right)}{b+c}+\frac{b\left(c+a\right)}{c+a}\)

\(=\left(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\right)+\left(a+b+c\right)\)

TỪ (*) VÀ DO:     \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=1\)

=>     \(1\left(a+b+c\right)=\left(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\right)+\left(a+b+c\right)\)

<=>    \(a+b+c=\left(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\right)+\left(a+b+c\right)\)

<=>    \(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}=0\)

=> TA CÓ ĐPCM.

16 tháng 8 2020

Ta có: \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=1\)

\(\Rightarrow\left(a+b+c\right)\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)=a+b+c\)

\(\Leftrightarrow\frac{a^2}{b+c}+\frac{ab}{b+c}+\frac{ac}{a+c}+\frac{b^2}{c+a}+\frac{ab}{c+a}+\frac{bc}{c+a}+\frac{c^2}{a+b}+\frac{ac}{a+b}+\frac{bc}{a+b}=a+b+c\)

\(\Leftrightarrow\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}+\frac{a\left(b+c\right)}{b+c}+\frac{b\left(c+a\right)}{c+a}+\frac{c\left(a+b\right)}{a+b}=a+b+c\)

\(\Leftrightarrow\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}+a+b+c=a+b+c\)

\(\Leftrightarrow\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}=0\)( ĐPCM )

16 tháng 8 2020

a. \(C=\frac{2x-1}{x+2}=\frac{2x+4-5}{x+2}=2-\frac{5}{x+2}\)

Vì C thuộc Z nên 5 / x + 2 thuộc Z

=> x + 2 thuộc { - 5 ; - 1 ; 1 ; 5 }

=> x thuộc { - 7 ; - 3 ; - 1 ; 3 } ( tm x thuộc Z )

c. \(D=\frac{x^2-2x+1}{x+1}=\frac{x\left(x+1\right)-3x+1}{x+1}=x-\frac{3x+3-2}{x+1}=x-3-\frac{2}{x+1}\)

Vì D thuộc Z nên 2 / x + 1 thuộc Z và x thuộc Z

=> x + 1 thuộc { - 2 ; - 1 ; 1 ; 2 }

=> x thuộc { - 3 ; - 2 ; 0 ; 1 } ( tm x thuộc Z )

c. Để C và D cũng nguyên bới một giá trị x thì x = - 3

16 tháng 8 2020

giúp mik đi huhu

Câu 4: Câu ghép: "Mặt trời chưa xuất hiện nhưng tầng tầng lớp lớp bụi hồng ánh sáng đã tràn lan khắp không gian như thoa phấn trên những tòa nhà cao tầng của thành phố, khiến chúng trở nên nguy nga, đậm nét.” có mấy vế câu?

A. Hai vế câu.

B. Ba vế câu.

C. Bốn vế câu.

D. Năm vế câu.

P.T :

Các chủ ngữ : Mặt trời , tầng tầng lớp lớp bụi hồng ánh sáng  ,  chúng .

Các vị ngữ : chưa xuất hiện  , đã tràn lan khắp không gian như thoa phấn trên những tòa nhà cao tầng của thành phố ,trở nên nguy nga.

16 tháng 8 2020

A. Hai vế câu.

16 tháng 8 2020

a)

pt <=>   \(\left(2x+\frac{1}{x}\right)^2+3=4\left(2x+\frac{1}{x}\right)\)

<=>   \(\left(2x+\frac{1}{x}-1\right)\left(2x+\frac{1}{x}-3\right)=0\)

<=>   \(\orbr{\begin{cases}2x+\frac{1}{x}=1\\2x+\frac{1}{x}=3\end{cases}}\)

<=>   \(\orbr{\begin{cases}2x^2+1=x\\2x^2+1=3x\end{cases}}\)

<=>   \(\orbr{\begin{cases}4x^2-2x+2=0\\\left(x-1\right)\left(2x-1\right)=0\end{cases}}\)

<=>   \(\orbr{\begin{cases}\left(2x-1\right)^2+1=0\left(1\right)\\\left(x-1\right)\left(2x-1\right)=0\left(2\right)\end{cases}}\)

CÓ:   \(\left(2x-1\right)^2+1\ge1>0\forall x\)

=> PT (1) VÔ NGHIỆM

PT (2) <=>   \(\orbr{\begin{cases}x=1\\x=\frac{1}{2}\end{cases}}\)

16 tháng 8 2020

b)

pt <=>   \(\left(x+\frac{1}{x}\right)\left(x^2+\frac{1}{x^2}-1\right)=13\left(x+\frac{1}{x}\right)\)

<=>   \(\left(x+\frac{1}{x}\right)\left(x^2+\frac{1}{x^2}-1-13\right)=0\)

<=>   \(\orbr{\begin{cases}x^2+1=x\\x^2+\frac{1}{x^2}=14\end{cases}}\)

<=>   \(\orbr{\begin{cases}\left(x-\frac{1}{2}\right)^2+\frac{3}{4}=0\left(1\right)\\x^4+1=14x^2\left(2\right)\end{cases}}\)

DO:   \(\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\forall x\)

=>   PT (1) VÔ NGHIỆM.

PT (2) <=>   \(a^2+1=14a\)             (    \(a=x^2\))

<=>   \(\orbr{\begin{cases}a=7+4\sqrt{3}\\a=7-4\sqrt{3}\end{cases}}\)

=>   \(\orbr{\begin{cases}x^2=\left(\sqrt{3}+2\right)^2\\x^2=\left(2-\sqrt{3}\right)^2\end{cases}}\)

=>   \(x=\left\{\sqrt{3}+2;-\sqrt{3}-2;2-\sqrt{3}\right\}\)

16 tháng 8 2020

\(\left(4\right)your\)

\(\left(5\right)stars\)

\(\left(6\right)finishes\)

16 tháng 8 2020

thanks

16 tháng 8 2020

để ý rằng nếu x là nghiệm thì x\(\ne\)0 nên ta chia cả tử số và mẫu số của vế trái cho x thì ta thu được \(\frac{12}{x+4+\frac{2}{x}}-\frac{3}{x+2+\frac{2}{x}}=1\)đặt \(t=x+\frac{2}{x}+2\)thì phương trình trở thành

\(\frac{12}{t+2}-\frac{3}{t}=1\Leftrightarrow12t-3t-6=t^2+2t\Leftrightarrow t^2-7t+6=0\Leftrightarrow\orbr{\begin{cases}t=1\\t=6\end{cases}}\)

với t=1 ta có \(x+\frac{2}{x}+2=1\Leftrightarrow t^2+t+2=0\)(vô nghiệm)

với t=6 ta có \(x+\frac{x}{2}+2=6\Leftrightarrow x^2-4x+2=0\Leftrightarrow x=2\pm\sqrt{2}\)

20 tháng 8 2020

Giả sử ta có một phương tiện C xuất phát cùng thời điểm từ A với vận tốc bằng vận tốc trung bình của xe đạp và xe máy, khi đó C luôn luôn ở giữa xe đạp và xe máy

Vận tốc của C là

(10+30):2=20 km/h

Vấn đề đặt ra là ta tìm thời điểm ô tô gặp C thì đó chính là thời điểm ô tô ở giữa xe đạp và xe máy.

Trong cùng 1 khoảng thời gian thì vận tốc tỷ lệ thuận với quãng đường đi được

\(\frac{V_C}{V_{oto}}=\frac{S_C}{S_{oto}}=\frac{20}{60}=\frac{1}{3}\)

Quãng đường ôt tô đi đến điểm gặp nhau với C hay o tô ở giữa xe đạp và xe máy là

[120:(1+3)]x3=90 km

Thời gian ô tô ở giữa xe đạp và xe máy là

90:60=1,5 giờ