Chứng tỏ rằng B= 1/22 +1/32+ 1/42+1/52+1/62+1/72+1/82 < 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B = 3 + 32 + 33 + ... + 32014 + 32015
3B = 3( 3 + 32 + 33 + ... + 32014 + 32015 )
3B = 32 + 33 + ... + 32015 + 32016
2B = 3B - B
= 32 + 33 + ... + 32015 + 32016 - ( 3 + 32 + 33 + ... + 32014 + 32015 )
= 32 + 33 + ... + 32015 + 32016 - 3 - 32 - 33 - ... - 32014 - 32015
= 32016 - 3
2B + 3 = 3x
<=> 32016 - 3 + 3 = 3x
<=> 32016 = 3x
<=> x = 2016
\(64^2.81^3.34\div2^{13}.3^9.17\)
\(=\left(2^6\right)^2.\left(3^4\right)^3.2.17\div2^{13}.3^9.17\)
\(=2^{12}.3^{12}.2.17\div2^{13}.3^9.17\)
\(=\left(2^{12}.2\div2^{13}\right).\left(3^{12}.3^9\right).\left(17.17\right)\)
\(=1.3^{21}.17^2\)
\(=3^{21}.17^2\)
Bạn ơi nếu dấu chia kia là phân số thì làm theo cách dưới đây , còn không phải thì làm theo cách kia
\(\frac{64^2.81^3.34}{2^{13}.3^9.17}=\frac{\left(2^6\right)^2.\left(3^4\right)^3.2.17}{2^{13}.3^9.17}=\frac{2^{12}.3^{12}.2.17}{2^{13}.3^9.17}=\frac{2^{13}.3^{12}.17}{2^{13}.3^9.17}=3^3=27\)
a b c A B 1 2 3 4 1 2 3 4
a)
c cắt a,b tại A, B
Mà \(a//b\) \(\text{a // b và \widehat{A_4} + \widehat{B_1} =180^O (1)}\)và \(\widehat{A_4}+\widehat{B_1}=180^O\left(1\right)\)
Ta có: \(\widehat{A_4}+\widehat{B_3}=180^O\left(2\right)\)
\(\widehat{B}_1+\widehat{B}_2=180^O\left(3\right)\)
Từ (1) , (2) ,(3) \(\Rightarrow\)\(\widehat{A}_3=\widehat{B}_1\)
Từ (1) và (3)\(\Rightarrow\widehat{A}_4=\widehat{B}_2\)
Do đó các cặp so le không bằng nhau
b)
\(\widehat{A}_1=\widehat{A_3}\left(đđ\right)\)
\(\widehat{A}_4=\widehat{A}_2\left(//\right)\)
\(\Rightarrow\widehat{A}_1=\widehat{B}_1\left(=\widehat{A}_3\right)\)
\(\widehat{A_2}=\widehat{B}_2\left(=\widehat{A}_4\right)\)
\(\widehat{B}_1=\widehat{B}_3,\widehat{B}_2=\widehat{B}_4\left(dđ\right)\)
\(\Rightarrow\widehat{A}_4=\widehat{B}_4\left(=\widehat{B}_2\right),\widehat{A}_3=\widehat{B}_3\left(=\widehat{B_1}\right)\)
Do đó hai góc đồng vị bằng nhau
c)
\(\widehat{A}_3=\widehat{B}_1,\widehat{B}_2=\widehat{A}_4\)
\(\Rightarrow\widehat{A}_3+\widehat{B}_2=\widehat{B}_1+\widehat{A}_4=180^O\)
Cặp góc không cùng phía còn lại bù nhau
#Shinobu Cừu
Bài làm :
Ta có :
\(8\times74+\left(X-2\right)=88\)
\(\Leftrightarrow592+X-2=88\)
\(\Leftrightarrow590+X=88\)
\(\Leftrightarrow X=88-590=-502\)
Vậy X=-502
Chúc bạn học tốt !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Kẻ đường cao AH (H thuộc BC) => BH/CH=9/16
=> BH=[5:(9+16)]x9=1,8 cm => CH=5-1,8=3,2 cm
\(AH^2=BH.CH=1,8.3,2=5,76\Rightarrow AH=2,4cm\)
\(S_{ABC}=\frac{BC.AH}{2}=\frac{5.2,4}{2}=6cm^2\)
a. \(2x^3+3x^2+2x+3=2x\left(x^2+1\right)+3\left(x^2+1\right)=\left(2x+3\right)\left(x^2+1\right)\)
b. \(a^2-ab+a-b=a\left(a+1\right)-b\left(a+1\right)=\left(a-b\right)\left(a+1\right)\)
c. \(2x^2+4x+2-2y^2=2\left(x^2+2x+1-y^2\right)=2\left(x+1+y\right)\left(x+1-y\right)\)
d. \(x^4-2x^3+10x^2-20x=x\left(x^3-2x^2+10x-20\right)\)
\(==x.x\left(x^2+10\right)-2\left(x^2+10\right)=x\left(x-2\right)\left(x^2+10\right)\)
e. \(x^3+2x^2+x=x^2\left(x+1\right)+x\left(x+1\right)=\left(x^2+x\right)\left(x+1\right)\)
f. \(xy+y^2-x-y=x\left(y-1\right)+y\left(y-1\right)=\left(x+y\right)\left(y-1\right)\)
a) 2x3 + 3x2 + 2x + 3
= ( 2x3 + 2x ) + ( 3x2 + 3 )
= 2x( x2 + 1 ) + 3( x2 + 1 )
= ( x2 + 1 )( 2x + 3 )
b) a2 - ab + a - b
= ( a2 + a ) - ( ab + b )
= a( a + 1 ) - b( a + 1 )
= ( a - b )( a + 1 )
c) 2x2 + 4x + 2 - 2y2
= ( 2x2 - 2y2 ) + ( 4x + 2 )
= 2( x2 - y2 ) + 2( 2x + 1 )
= 2( x2 - y2 + 2x + 1 )
= 2[ ( x2 + 2x + 1 ) - y2 ]
= 2[ ( x + 1 )2 - y2 ]
= 2( x - y + 1 )( x + y + 1 )
d) x4 - 2x3 + 10x2 - 20x
= x( x3 - 2x2 + 10x - 20 )
= x[ ( x3 - 2x2 ) + ( 10x - 20 ) ]
= x[ x2( x - 2 ) + 10( x - 2 ) ]
= x( x - 2 )( x2 + 10 )
e) x3 + 2x2 + x = x( x2 + 2x + 1 ) = x( x + 1 )2
f) xy + y2 - x - y
= ( xy - x ) + ( y2 - y )
= x( y - 1 ) + y( y - 1 )
= ( x + y )( y - 1 )
@hoàng đây là tính hay gì bạn . Nếu tính thì :
a) (2x + 5y)2
= (2x + 5y)(2x + 5y)
= 2x(2x + 5y) + 5y(2x + 5y)
= 4x2 + 10xy + 10xy + 25y2
= 4x2 + 20xy + 25y2
b) Bạn sửa đề lại nhé
c) (4x - 7y)2 = (4x - 7y)(4x - 7y)
= 4x(4x - 7y) - 7y(4x - 7y)
= 16x2 - 28xy - 28xy + 49y2
= 16x2 - 56xy + 49y2
d) (3x3 - 2y2)2
= (3x3 - 2y2)(3x3 - 2y2)
= 3x3(3x3 - 2y2) - 2y2(3x3 - 2y2)
= 9x6 - 6x3y2 - 6x3y2 + 4y4
= 9x6 - 12x3y2 + 4y4
@huanhoahong bạn không biết làm thì đừng có vô đây để trả lời và nói xấu bạn
Ta có 1/2^2<1/1.2 ; 1/3^2<1/2.3 ; ....; 1/8^2<1/7.8
=> B<1/1.2+1/2.3+...+1/7.8=1-1/2+1/2-1.3+.....+1/7-1/8=1-1/8<1 (ĐPCM)
\(B=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{8^2}\)
Ta có : \(\frac{1}{2^2}=\frac{1}{2\cdot2}< \frac{1}{1\cdot2}\); \(\frac{1}{3^2}=\frac{1}{3\cdot3}< \frac{1}{2\cdot3}\); ... ; \(\frac{1}{8^2}=\frac{1}{8\cdot8}< \frac{1}{7\cdot8}\)
Cộng vế với vế
=> \(B=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{8^2}< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{7\cdot8}\)
=> \(B< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{7}-\frac{1}{8}\)
=> \(B< \frac{1}{1}-\frac{1}{8}=\frac{7}{8}\)(1)
Lại có \(\frac{7}{8}< 1\)(2)
Từ (1) và (2) => \(B< \frac{7}{8}< 1\Rightarrow B< 1\left(đpcm\right)\)