A= 9999931999 - 5555571997
Chứng minh rằng A chia hết cho 10
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình dễ vẽ , bạn tự vẽ nha.
a) \(\Delta AKH\)vuông tại A có \(AK^2=KE.KH\)hay \(6^2=KE.10\Rightarrow KE=3,6\)
Vậy KE=3,6
a) Để A có nghĩa <=> \(\hept{\begin{cases}2x+10\ne0\\x\ne0\\2x\left(x+5\right)\ne0\end{cases}}\) <=> \(\hept{\begin{cases}x\ne-5\\x\ne0\\x\ne0;x\ne-5\end{cases}}\) <=> \(\hept{\begin{cases}x\ne-5\\x\ne0\end{cases}}\)
b) A = \(\frac{x^2+2x}{2x+10}+\frac{x-5}{x}+\frac{50-5x}{2x\left(x+5\right)}\)
A = \(\frac{x\left(x^2+2x\right)+2\left(x-5\right)\left(x+5\right)+50-5x}{2x\left(x+5\right)}\)
A = \(\frac{x^3+2x^2+2\left(x^2-25\right)+50-5x}{2x\left(x+5\right)}\)
A = \(\frac{x^3+2x^2+2x^2-50+50-5x}{2x\left(x+5\right)}\)
A = \(\frac{x^3+4x^2-5x}{2x\left(x+5\right)}\)
A = \(\frac{x\left(x^2+4x-5\right)}{2x\left(x+5\right)}\)
A = \(\frac{x^2+5x-x-5}{2\left(x+5\right)}\)
A = \(\frac{\left(x-1\right)\left(x+5\right)}{2\left(x+5\right)}=\frac{x-1}{2}\)
a) a2 - b2 + 2a - 2b = (a + b)(a - b) + 2(a - b) = (a - b)(a + b + 2)
b) x2 + x - 12 = x2 + 4x - 3x - 12 = x(x + 4) - 3(x + 4) = (x - 3)(x + 4)
c) x4 + 4 = (x4 + 4x2 + 4) - 4x2 = (x2 + 2)2 - 4x2 = (x2 - 2x + 2)(x2 + 2x + 2)
Bài làm :
a) a2 - b2 + 2a - 2b = (a + b)(a - b) + 2(a - b) = (a - b)(a + b + 2)
b) x2 + x - 12 = x2 + 4x - 3x - 12 = x(x + 4) - 3(x + 4) = (x - 3)(x + 4)
c) x4 + 4 = (x4 + 4x2 + 4) - 4x2 = (x2 + 2)2 - 4x2 = (x2 - 2x + 2)(x2 + 2x + 2)
Chúc bạn học tốt !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
a) \(\left(x-2\right)\left(2x+1\right)\)
\(=2x^2-3x-2\)
b) \(\left(x-2y\right)\left(x+y\right)\)
\(=x^2-xy-2y^2\)
a) \(P=\frac{3\left(x+\sqrt{x}-3\right)}{x+\sqrt{x}-2}+\frac{\sqrt{x}+3}{\sqrt{x}+2}-\frac{\sqrt{x}-2}{\sqrt{x}-1}\) \(\left(x\ge0;x\ne1\right)\)
\(P=\frac{3x+3\sqrt{x}-9}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}+\frac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}-\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
\(P=\frac{3x+3\sqrt{x}-9+x+2\sqrt{x}-3-x+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
\(P=\frac{3x+5\sqrt{x}-8}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
\(P=\frac{\left(\sqrt{x}-1\right)\left(3\sqrt{x}+8\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
\(P=\frac{3\sqrt{x}+8}{\sqrt{x}+2}\)
b) \(P=\frac{7}{2}\)
\(\Leftrightarrow\frac{3\sqrt{x}+8}{\sqrt{x}+2}=\frac{7}{2}\)
\(\Rightarrow6\sqrt{x}+16=7\sqrt{x}+14\)
\(\Leftrightarrow\sqrt{x}=2\Rightarrow x=4\)
[\(\frac{-75}{59}\).\(\frac{-107}{93}\)]\(\frac{31}{50}\)=\(\frac{2675}{1829}\).\(\frac{31}{50}\)=\(\frac{107}{118}\)
\(\left[\frac{1\frac{11}{31}\cdot4\frac{3}{7}-\left(15-6\frac{1}{3}\cdot\frac{2}{19}\right)}{4\frac{5}{6}+\frac{1}{6}\left(12-5\frac{1}{3}\right)}\cdot\left(-1\frac{14}{93}\right)\right]\cdot\frac{31}{50}\)
\(=\left[\frac{\frac{42}{31}\cdot\frac{31}{7}-\left(15-\frac{19}{3}\cdot\frac{2}{19}\right)}{4\frac{5}{6}+\frac{1}{6}\left(12-\frac{16}{3}\right)}\cdot\left(-\frac{107}{93}\right)\right]\cdot\frac{31}{50}\)
\(=\left[\frac{6-\left(15-\frac{2}{3}\right)}{\frac{29}{6}+\frac{1}{6}\cdot\frac{20}{3}}\cdot\left(-\frac{107}{93}\right)\right]\cdot\frac{31}{50}\)
\(=\left[\frac{6-15+\frac{2}{3}}{\frac{29}{6}+\frac{10}{9}}\cdot\left(-\frac{107}{93}\right)\right]\cdot\frac{31}{50}\)
\(=\left[\frac{-\frac{25}{3}}{\frac{107}{18}}\cdot\left(-\frac{107}{93}\right)\right]\cdot\frac{31}{50}\)
\(=\left[\left(-\frac{150}{107}\right)\cdot\left(-\frac{107}{93}\right)\right]\cdot\frac{31}{50}=\frac{50}{31}\cdot\frac{31}{50}=1\)
Ta đi chứng minh \(A⋮2,A⋮5\)
+) Ta có : \(A=99999^{1999}-555557^{1997}\equiv1-1\equiv0\left(mod2\right)\)
\(\Rightarrow A⋮2\)
Lại có : \(99999\equiv\left(-1\right)\left(mod5\right)\)
\(\Rightarrow99999^{1999}\equiv\left(-1\right)\left(mod5\right)\)
Vì \(555557\equiv2\left(mod5\right)\)
\(\Rightarrow555557^{1997}\equiv2^{1997}\left(mod5\right)\)
Ta thấy rằng : \(2^2=4\equiv\left(-1\right)\left(mod5\right)\)
\(\Rightarrow\left(2^2\right)^{998}\equiv1\left(mod5\right)\)
\(\Rightarrow2^{1996}\equiv1\left(mod5\right)\)
\(\Rightarrow2^{1997}\equiv2\left(mod5\right)\)
Do đó : \(555557^{1997}\equiv2\left(mod5\right)\)
Vậy \(A\equiv\left(-1\right)-2\equiv\left(-3\right)\left(mod5\right)\)
Hum.... đề sai.
Cảm ơn bạn nha nhưng mình nghĩ là đề không sai đâu