cho tam giác ABC, tia phân giác góc B; góc C cắt nhau tại O. Biết góc BOC bằng 126 độ. Tính BAC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
She is not only a teacher, she is also a singer
=> Not only is she a teacher but she also is a singer
She is not only a teacher, she is also a singer.
=> Not only is she a teacher, she is also a singer.
Ta có : \(B=x.\left(x^2+x+1\right)-x^2.\left(x+1\right)-x+5\)
\(=x^3-x^2-x-x^3-x^2-x+5\)
\(=5\) không phụ thuộc vào giá trị biến \(x\)
B = x( x2 + x + 1 ) - x2( x + 1 ) - x + 5
B = x3 + x2 + x - x3 - x2 - x + 5
B = 5
=> đpcm
Tự tìm trên mạng đi bạn nhớ
Một đống mà gõ cho bạn đến bao giờ
Bài làm:
a) \(\left(x+4\right)^2-1=0\)
\(\Leftrightarrow\left(x+4\right)^2=1\)
\(\Leftrightarrow\orbr{\begin{cases}x+4=1\\x+4=-1\end{cases}}\Rightarrow\orbr{\begin{cases}x=-3\\x=-5\end{cases}}\)
b) \(\left(2x-3\right)^2=100\)
\(\Leftrightarrow\orbr{\begin{cases}2x-3=10\\2x-3=-10\end{cases}}\Leftrightarrow\orbr{\begin{cases}2x=13\\2x=-7\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{13}{2}\\x=-\frac{7}{2}\end{cases}}\)
c) \(x^2+8x+16=0\)
\(\Leftrightarrow\left(x+4\right)^2=0\)
\(\Rightarrow x+4=0\)
\(\Rightarrow x=-4\)
d) \(4x^2-12x=-9\)
\(\Leftrightarrow4x^2-12x+9=0\)
\(\Leftrightarrow\left(2x-3\right)^2=0\)
\(\Rightarrow2x-3=0\)
\(\Rightarrow x=\frac{3}{2}\)
a) \(\frac{\sqrt{7-4\sqrt{3}}}{\sqrt{2-\sqrt{3}}}\cdot\sqrt{2+\sqrt{3}}\)
\(=\frac{\sqrt{4-2.2.\sqrt{3}+3}}{\sqrt{2-\sqrt{3}}}\cdot\frac{\sqrt{4+2\sqrt{3}}}{\sqrt{2}}\)
\(=\frac{\sqrt{\left(2-\sqrt{3}\right)^2}}{\sqrt{4-2\sqrt{3}}}\cdot\sqrt{\left(1+\sqrt{3}\right)^2}\)
\(=\frac{2-\sqrt{3}}{\sqrt{3}-1}\cdot\left(1+\sqrt{3}\right)\)
\(=\frac{\left(2-\sqrt{3}\right)\left(1+\sqrt{3}\right)^2}{2}\)
b) \(\sqrt{\frac{3}{20}}+\sqrt{\frac{1}{60}}-2\sqrt{\frac{1}{50}}\)
\(=\sqrt{\frac{1}{10}\cdot\frac{3}{2}}+\sqrt{\frac{1}{10}\cdot\frac{1}{6}}-2\sqrt{\frac{1}{10}\cdot\frac{1}{5}}\)
\(=\sqrt{\frac{1}{10}}\cdot\left(\sqrt{\frac{3}{2}}+\sqrt{\frac{1}{6}}-2\sqrt{\frac{1}{5}}\right)\)
\(=\frac{1}{\sqrt{10}}\cdot\left(\frac{\sqrt{6}}{2}+\frac{\sqrt{6}}{6}-\frac{2\sqrt{5}}{5}\right)\)
\(=\frac{1}{\sqrt{10}}\cdot\left(\frac{15\sqrt{6}+5\sqrt{6}-12\sqrt{5}}{6}\right)\)
\(=\frac{2.\left(5\sqrt{6}-3\sqrt{5}\right)}{3\sqrt{10}}\cdot\)
......
1, electricity gas and water are ..........necessities..........in western countries NEED
2, there has been some........reduction.........in unemployment REDUCE
3, there are lots oof technological.........innovations..........designed to save energy INNOVATE
4, I switched the light off to save.........electricity..........ELECTRIC
a) Áp dụng định lí Py-ta-go vào \(\Delta AHB\) vuông ở \(\widehat{H}\)ta có:
AB2=AH2+BH2
=> AB=\(\sqrt{16^2+25^2}\)
<=>AB=\(\sqrt{881}\)
Áp dụng hệ thức 2 vào \(\Delta ABC\)vuông tại \(\widehat{A}\)ta có:
AH2=BH.CH
<=> 162=25.CH
<=>256=25.CH
=>CH=\(\frac{256}{25}\)=10,24
Ta có:BC=BH+CH
<=>BC=25+\(\frac{256}{25}\)=\(\frac{881}{25}\)=35.24
Áp dụng định lí Py-ta-go vào \(\Delta ABC\)vuông tại \(\widehat{A}\)ta có:
BC2=AB2+AC2
<=>AC2=BC2-AB2
=>AC=\(\sqrt{\left(\sqrt{881}\right)^2-\left(\frac{881}{25}\right)^2}\)=\(-\sqrt{360,8576}\)
b)Áp dụng định lí Py-ta-go vào \(\Delta AHB\)vuông tai \(\widehat{H}\)ta có:
AB2=AH2+BH2
<=>AH2=AB2-BH2
<=>AH=\(\sqrt{12^2-6^2}\)=\(\sqrt{108}\)
Áp dụng hệ thức 2 vào \(\Delta ABC\)vuông tai \(\widehat{A}\)ta có:
AH2=BH.CH
<=>108=36.CH
=>CH=\(\frac{108}{36}\)=3
Ta có:BC=BH+CH
<=> BC=6+3=9
Áp dụng Py-ta-go vào \(\Delta ABC\)vuông tại \(\widehat{A}\)ta có:
BC2=AB2+AC2
<=>AC2=BC2-AB2
=> AC=\(\sqrt{9^2-12^2}\)=\(-\sqrt{63}\)
Nhớ sau mỗi kết quả của phép tính viết "(cùng đơn vị đo)" nhé!
A B C O 1 1
Xét \(\Delta BOC\)có : \(\widehat{B}+\widehat{O}+\widehat{C}=180^o\)( ĐL tổng 3 góc trong 1 tam giác )
\(\widehat{B}+126^o+\widehat{C}=180^o\)
A B C O
Giải :
Xét tam giác BOC :
\(\widehat{OBC}+\widehat{OCB}=180^o-126^o=54^o\)
Vì BO, CO là phân giác nên : \(\widehat{OBC}=\frac{1}{2}\widehat{ABC}\)và \(\widehat{OCB}=\frac{1}{2}\widehat{ACB}\)
\(\Rightarrow\widehat{ABC}+\widehat{ACB}=2.54=108^o\)
Xét tam giác ABC :
\(\Rightarrow\widehat{BAC}=180-108=72^o\)
Mình cho bạn công thức tổng quát luôn nè : \(\widehat{BOC}=\frac{180^o-\widehat{BAC}}{2}\)