cho tam giác abc có 3 góc nhọn, vẽ các đường cao be, cf cắt nhau tại h(c thuộc ac, f thuộc ab).
a) Tam giác aeb đồng dạng với tam giác afc
b) tam giác aef đồng dạng với tam giác abc.
c) Tia ah cắt bc tại d. Vẽ dm vuông vs AB, DN vuông vs ac, dk vuông vs cf, trong đó (m thuộc ab, n thuộc ac, k thuộc cf). CMR: m, k, n thẳng hàng.
LÀM GIÚP MÌNH PHẦN IN ĐẬM NHÉ. CẢM ƠN
a) Do đg cao BE cắt đg cao CF ở H
=> H là trực tâm của tam giác ABC
=> AH là đg cao => AH ⊥ BC (đpcm)
b) Xét ΔAEB và ΔAFC có
\(\widehat{E}=\widehat{F}=90^0\)
\(\widehat{ABC}\) chung
=> ΔAEB ∼ ΔAFC
\(\Rightarrow\frac{AE}{AF}=\frac{AB}{AC}\)
\(\Rightarrow AE\times AC=AF\times AB\left(đpcm\right)\)
c) Xét Δ AEF và ΔABC
\(\frac{AE}{AF}=\frac{AB}{AC}\Rightarrow\frac{AE}{AB}=\frac{AF}{AC}\)
\(\widehat{ABC}\)chung
=> Δ AEF ∼ ΔABC (đpcm)
bn ơi câu c là chứng minh 3 đường thẳng hàng mà bn