\(\hept{\begin{cases}\sqrt{x+y}-\sqrt{x-y}=1\\\sqrt{x^2+y^2}+\sqrt{x^2-y^2}=1\end{cases}}\)
\(\hept{\begin{cases}\sqrt{x+y}-\sqrt{x-y}=2\\\sqrt{x^2+y^2}+\sqrt{x^2-y^2}=4\end{cases}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt a = \(\sqrt{2+\sqrt{\frac{5+\sqrt{5}}{2}}+\sqrt{2}-\sqrt{\frac{5+\sqrt{5}}{2}}}\)
\(a^2=4+2\sqrt{4-\frac{5+\sqrt{5}}{2}}=4+\sqrt{6-2\sqrt{5}}\)
\(=4+\sqrt{\left(\sqrt{5}-1\right)^2}=3+\sqrt{5}\Rightarrow a=\sqrt{3}+\sqrt{5}\)
\(\Rightarrow\)\(x=\sqrt{3+\sqrt{5}}-\sqrt{3-\sqrt{5}}-1\)
\(=\sqrt{\frac{6+2\sqrt{5}}{2}}-\sqrt{\frac{6-2\sqrt{5}}{2}}-1=\frac{\sqrt{5}+1}{\sqrt{2}}-\frac{\sqrt{5}-1}{\sqrt{2}}-1\)
\(=\sqrt{2}-1\Rightarrow x=\sqrt{2}-1\Rightarrow x=x^2+2x-1=0\)
\(B=2x^3+3x^2-4x+2\)
\(B=2x\left(x^2+2x-1\right)-\left(x^2+2x-1\right)+1=1\)
Tham khao:
2,Biết x+y=5x+y=5 và x+y+x2y+xy2=24x+y+x2y+xy2=24 Giá trị của biểu thức x3+y3x3+y3 là
3,Nếu đa thức x2+px2+qx2+px2+q chia hết cho đa thức x2−2x−3x2−2x−3 thì khi đó giá trị của
2) x+y+x2y+xy2=24⇔x+y+xy(x+y)=24⇔5+5xy=24⇔xy=24−55=3,8x+y+x2y+xy2=24⇔x+y+xy(x+y)=24⇔5+5xy=24⇔xy=24−55=3,8
(x+y)=5⇔x2+2xy+y2=25⇔x2+y2=25−2xy=17,4(x+y)=5⇔x2+2xy+y2=25⇔x2+y2=25−2xy=17,4
x3+y3=(x+y)(x2−xy+y2)=5(17,4−3,8)=68
3) x4−2x−3=(x+1)⋅(x−3)x4−2x−3=(x+1)⋅(x−3)
Để đa thức x4+px2+q⋮x2−2x−3x4+px2+q⋮x2−2x−3 => Có hai nghiệm của x là x = -1 hoặc x = 3.
+) Xét x = -1 : x4+px2+q=0⇒(−1)4+p⋅(−1)2+q=0x4+px2+q=0⇒(−1)4+p⋅(−1)2+q=0
⇒1+p+q=0→q=−1−p⇒1+p+q=0→q=−1−p (1)
+) Xét x = 3 : x4+px2+q=0⇒34+p⋅32+q=0x4+px2+q=0⇒34+p⋅32+q=0
⇒81+p⋅9+q=0⇒81+p⋅9+q=0 (2)
Thế (1) vào (2) ta có : 81+9⋅p−1−p=081+9⋅p−1−p=0
⇔80+8p=0⇔80+8p=0
⇔p=−10⇔p=−10
Vậy giá trị của p là -10.
Dự đoán dấu "=" khi \(x=y=z=\frac{1}{\sqrt{3}}\Rightarrow S=1\)
Ta chứng minh \(S=1\) là GTNN của \(S\)
Thật vật ta có: \(\frac{1}{4x^2-yz+2}+\frac{1}{4y^2-xz+2}+\frac{1}{4z^2-xy+2}\ge1\)
\(\Leftrightarrow\frac{-4x^2+yz+1}{4x^2-yz+2}+\frac{-4y^2+xz+1}{4y^2-xz+2}+\frac{-4z^2+xy+1}{4z^2-xy+2}\ge0\)
\(\Leftrightarrow\frac{2yz-4x^2+xy+xz}{4x^2-yz+2}+\frac{2xz-4y^2+xy+yz}{4y^2-xz+2}+\frac{2xy-4z^2+xz+yz}{4z^2-xy+2}\ge0\)
\(\LeftrightarrowΣ_{cyc}\frac{-\left(2x+z\right)\left(x-y\right)-\left(2x+y\right)\left(x-z\right)}{4x^2-yz+2}\ge0\)
\(\LeftrightarrowΣ_{cyc}\left(\left(x-y\right)\left(\frac{2y+z}{4y^2-xz+2}-\frac{2x+z}{4x^2-yz+2}\right)\right)\ge0\)
\(\LeftrightarrowΣ_{cyc}\left(\left(x-y\right)^2\left(\frac{z^2+6yz+6xz+8xy-4}{\left(4y^2-xz+2\right)\left(4x^2-yz+2\right)}\right)\right)\ge0\) *Đúng*
BĐT cuối đúng hay ta có ĐCPM
Đặt \(\frac{a+b}{6}=\frac{b+c}{7}=\frac{a+c}{8}=k\)
Do đó \(a+b=6k;b+c=7k;a+c=8k\)
Khi đó \(a+b+b+c+a+c=6k+7k+8k\)hay \(2.\left(a+b+c\right)=21k\)
Suy ra \(a+b+c=10,5k\)
Từ \(a+b+c=10,5k\)và \(a+b=6k\)nên \(c=4,5k\)
Từ \(a+b+c=10,5k\)và \(b+c=7k\)nên \(a=3,5k\)
Do vậy tính được \(b=2,5k\)
Thay \(a=3,5k\), \(b=2,5k\),\(c=4,5k\)vào \(a+b+c=14\)ta có
\(3,5k+2,5k+4,5k=14\Rightarrow10,5k=14\Rightarrow k=\frac{4}{3}\)
Với \(k=\frac{4}{3}\)thì \(a=\frac{14}{3};b=\frac{10}{3};c=6\)
Vậy \(a=\frac{14}{3};b=\frac{10}{3};c=6\)thoả mãn phương trình