Cho hệ pt :{2x+3y=4
x-y=m
a)để hệ pt khi m=2
b)tìm m để hệ pt có nghiệm x>0;y>0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để P(x) bằng đa thức 0 thì <=> \(\hept{\begin{cases}3m-5n+1=0\\4m-n-10=0\end{cases}}\)
(rồi giải bình thường thôi)
Để P(x) bằng đa thức 0 thì \(\hept{\begin{cases}3m-5n+1=0\\4m-n-10=0\end{cases}}\)
<=>\(\hept{\begin{cases}3m-5n=-1\\20m-5n=50\end{cases}}\)<=> \(\hept{\begin{cases}-17m=-51\\3m-5n=-1\end{cases}}\)
<=> \(\hept{\begin{cases}m=3\\9-5n=-1\end{cases}}\) <=> \(\hept{\begin{cases}m=3\\-5n=-10\end{cases}}\)
<=> \(\hept{\begin{cases}m=3\\n=2\end{cases}}\)
Vậy m=3, n=2 thì đa thức P(x) bằng đa thức 0
\(pt\left(1\right)\cdot pt\left(2\right)\Leftrightarrow\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge9\)
\(\Leftrightarrow x=y=z\)\(\Rightarrow x=y=z=3\)
\(ax^2+bx+c=0\)
\(\Leftrightarrow x^2+\frac{bx}{a}+\frac{c}{a}=0\)
\(\Leftrightarrow x^2+2\cdot x\cdot\frac{b}{2a}+\left(\frac{b}{2a}\right)^2-\left(\frac{b}{2a}\right)^2+\frac{c}{a}=0\)
\(\Leftrightarrow\left(x+\frac{b}{2a}\right)^2-\frac{b^2-4ac}{4a^2}=0\)
\(\Leftrightarrow\left(x+\frac{b}{2a}\right)^2=\frac{b^2-4ac}{4a^2}\)
\(\Leftrightarrow x+\frac{b}{2a}=\pm\frac{\sqrt{b^2-4ac}}{2a}\)
\(\Leftrightarrow x=\pm\frac{\sqrt{b^2-4ac}-b}{2a}=\frac{-b\pm\sqrt{b^2-4ac}}{2a}\)
\(C1\)\(x^2+4x+4=0\)
\(\Leftrightarrow\left(x+2\right)^2=0\)
\(\Rightarrow x+2=0\)
\(\Rightarrow x=-2\)
\(C2\) \(x^2+4x+4=0\)
có \(\Delta=b^2-4ac\) \(=16-4.4=16-16=0\)
vì \(\Delta=0\) nên phương trình có 1 nghiệm kép là \(x_1=x_2=\frac{-4}{2}=-2\)
vậy phương trình đã cho có nghiệm kép \(x_1=x_2=-2\)
C1: \(x^2+4x+4=0\)
Có \(\Delta=b^2-4ac=16-4.4=0\)
Vì \(\Delta=0\) Nên phương trình có nghiệm kép \(x=x=\frac{-4}{2}=-2\)
C2: \(x^2+4x+4=x^2+2.x.2+2^2=\left(x+2\right)^2=0\)
\(\Rightarrow x+2=0\)
\(\Rightarrow x=-2\)
Dễ thấy c là số chẵn (1)
\(\overline{abc}=4c\left(a+b\right)^2\)
\(\Leftrightarrow100a+10b+c=4c\left(a+b\right)^2\)
\(\Leftrightarrow9\left(11a+b\right)+\left(a+b\right)+c=3c\left(a+b\right)^2+c\left(a+b\right)^2\)
\(\Leftrightarrow c\left[\left(a+b\right)^2-1\right]-\left(a+b\right)=9\left(11a+b\right)-3c\left(a+b\right)^2\)
\(\Rightarrow c\left[\left(a+b\right)^2-1\right]-\left(a+b\right)⋮3\)
Xét \(\left(a+b\right)\equiv1\left(mod3\right)\)
\(\Rightarrow c\left[\left(a+b\right)^2-1\right]-\left(a+b\right)\equiv-1\left(mod3\right)\)
Xét \(\left(a+b\right)\equiv-1\left(mod3\right)\)
\(\Rightarrow c\left[\left(a+b\right)^2-1\right]-\left(a+b\right)\equiv1\left(mod3\right)\)
Xét \(\left(a+b\right)\equiv0\left(mod3\right)\)
\(\Rightarrow c⋮3\)(2)
Từ (1) và (2) \(\Rightarrow c=6\)
\(\Rightarrow\overline{abc}⋮3\)
\(\Rightarrow a+b+6⋮3\)
\(\Rightarrow a+b⋮3\)
Mà ta có:
\(a+b=\sqrt{\frac{\overline{ab6}}{24}}\le\sqrt{\frac{996}{24}}\le6\)
Tới đây đơn giản làm nốt nhé
hệ pt <=> 2x+3y = 4
2x-2y = 2m
<=> 5y = 4-2m
x-y = m
<=> y = 4-2m/5
x = 3m+4/5
a, Với m = 1 thì : x = 7/5 ; y = 2/5
b, Để hệ có nghiệm x>0 ; y> 0 thì :
4-2m/5 > 0 và 3m+4/5 > 0
<=> 4-2m > 0 và 3m+4 > 0
<=> m < 2 và m > -4/3
<=> -4/3 < m < 2
Tk mk nha