Tìm x,biết
a/x-2 = 2 1
3 3
b/3 1 = -0,25
4
c/ 50%.x=5 1 - 4 1
2 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: a^2 + b^2 = c^2 + d^2 => a^2 − c^2 = d^2 − b^2
=>a2−c2=d2−b2
=> (a−c)(a+c)=(d−b)(d+b)(1)
Lại có: a + b = c + d
=> a − c = d − b
+) Nếu a=b=c=d
=>a^2020 + b^2020 = c^2020+d^2020
+) Nếu a ≠ b ≠ c≠d
Khi đó (1) trở thành: a + c = b + d (2)
Mà a+b=c+d (3)
Cộng theo vế của (2) và (3)
2 a + b + c = b + c + 2 d
=>2 a = 2 d ⇒ a = d = b = c ⇒2a=2b=2c=2d⇒a^2020 + b^2020 = c^2020+d^2020
Vậy ta luôn có a^2020 + b^2020 = c^2020+d^2020 với điều kiện của đề.
Học tốt !
Ta có a + b = c + d
=> (a + b)2 = (c + d)2
=> a2 + b2 + 2ab = c2 + d2 + 2cd
=> 2ab = 2cd
=> ab = cd
Khi đó a + b = c + d
=> (a + b)2020 = (c + d)2020
=> a2020 + b2020 + 2020a.b2019 + 2020a2019.b = c2 + d2 + 2020cd2019 + 2020c2019d
=> 2020ab(a2018 + b2018) + a2020 + b2020 = c2020 + d2020 + 2020cd(d2018 + c2018)
a)\(\left(x^4+8x^2+16\right):\left(x^2+4\right)\)
\(=\left(x^2+4\right)^2:\left(x^2+4\right)\)
\(=x^2+4\)
b)\(\left(25-x^2\right):\left(x+5\right)\)
=\(\left(x^2-5^2\right):\left(x+5\right)\)
\(=\left(x-5\right)\left(x+5\right):\left(x+5\right)\)
\(=x-5\)
c)\(\left(x^3+1\right):\left(x^2-x+1\right)\)
\(=\left(x+1\right)\left(x^2-x+1\right):\left(x^2-x+1\right)\)
\(=x+1\)
a) \(\left(x^4+8x^2+16\right):\left(x^2+4\right)\)\(=\left(x^2+4\right)^2:\left(x^2+4\right)\)\(=x^2+4\)
b) \(\left(25-x^2\right):\left(x+5\right)=\left(x-5\right).\left(x+5\right):\left(x+5\right)\)\(=x-5\)
c) \(=\left(x^3+1\right)\left(x^2-x+1\right)=\left(x+1\right)\left(x^2-x+1\right)\)\(=x+1\)
Học tốt
\(p^2+2q^2=41\Rightarrow41-2q^2=p^2\Rightarrow p^2\) là số lẻ
=> p=2k+1 (k thuộc N*), thay vào=> q2=2k(k+1)-20
=> q chẵn mà q là số nguyên tối nên q=2
=> p2=49 => p=7
A = \(\left(1+\frac{1}{3}\right)\left(1+\frac{1}{8}\right)\left(1+\frac{1}{15}\right)...\left(1+\frac{1}{n.n+n.2}\right)=\frac{4}{3}.\frac{9}{8}.\frac{16}{15}...\frac{n^2+2n+1}{n\left(n+2\right)}\)
\(=\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}...\frac{\left(n+1\right)^2}{n\left(n+2\right)}=\frac{2^2.3^2.4^2...\left(n+1\right)^2}{1.3.2.4.3.5...n\left(n+2\right)}=\frac{\left[2.3.4...\left(n+1\right)\right].\left[2.3.4...\left(n+1\right)\right]}{\left(1.2.3...n\right).\left[3.4.5..\left(n+2\right)\right]}\)
\(=\frac{\left(n+1\right).2}{n+2}\)
p/s : giải thích phần n2 + 2n + 1 = (n2 + n) + (n + 1) = n(n + 1) + (n + 1) = (n + 1).(n + 1) = (n + 1)2
1.\(x^2-7x+6\)\(=x^2-6x-x+6\)\(=x\left(x-6\right)-\left(x-6\right)\)\(=\left(x-1\right)\left(x-6\right)\)
2.\(y^2+xy-2x^2=y+2xy-xy-2x^2\)\(=y\left(y-x\right)+2x\left(y-x\right)\)\(=\left(y+2x\right)\left(y-x\right)\)
Học tốt !
1. x2 - 7x + 6
= x2 - x - 6x + 6
= x( x - 1 ) - 6( x - 1 )
= ( x - 6 )( x - 1 )
2. y2 + xy - 2x2
= y2 - xy + 2xy - 2x2
= y( y - x ) + 2x( y - x )
= ( y + 2x )( y - x )
Khi xóa đi 2 số bất kì và viết lại một số có giá trị bằng tổng của 2 số đã xóa lúc đầu cộng thêm 1 thì tổng lúc sau sẽ hơn tổng lúc đầu là 1 đơn vị
=> Tổng các số sau mỗi bước sẽ tăng lên 1 đơn vị.
Tổng từ 1 đến 10 là: 1 + 2 + 3 + … + 10 = 55.
Tổng sau 9 lần chơi liên tiếp là: 55 + 9 = 64
Ta có : Chiều cao tam giác ABC = Chiều cao tam giác tăng thêm
=> Chiều cao của tam giác ABC hay chiều cao tam giác tăng thêm là :
75/2 x 2 : 5 = 15 m
=> Đáy của tam giác dài : 150 x 2 : 15 = 30 cm
a, \(\frac{x-2}{3}=2.\frac{1}{3}\Leftrightarrow\frac{x-2}{3}=\frac{2}{3}\)
\(\Leftrightarrow x-2=2\Leftrightarrow x=4\)
b, \(3.\frac{1}{4}=-0,25\Leftrightarrow\frac{3}{4}=-0,25\)đề sai rồi bn nhé
c, \(50\%x=5.\frac{1}{2}-4.\frac{1}{3}\Leftrightarrow50\%x=\frac{5}{2}-\frac{4}{3}\)
\(\Leftrightarrow50\%x=\frac{7}{6}\Leftrightarrow x=\frac{7}{3}\)