K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 8 2020

Ta có: a^2 + b^2 = c^2 + d^2 => a^2 − c^2 = d^2 − b^2 

=>a2−c2=d2−b2

=> (a−c)(a+c)=(d−b)(d+b)(1)

Lại có: a + b = c + d

=> a − c = d − b

+) Nếu a=b=c=d

=>a^2020 + b^2020 = c^2020+d^2020

 +) Nếu a ≠  b ≠ c≠d 

Khi đó (1) trở thành: a + c = b + d (2)

Mà a+b=c+d (3)

Cộng theo vế của (2) và (3)

2 a + b + c = b + c + 2 d

=>2 a = 2 d ⇒ a = d = b = c ⇒2a=2b=2c=2d⇒a^2020 + b^2020 = c^2020+d^2020 

Vậy ta luôn có a^2020 + b^2020 = c^2020+d^2020  với điều kiện của đề.

Học tốt !

9 tháng 8 2020

Ta có a + b = c + d

=> (a + b)2 = (c + d)2

=> a2 + b2 + 2ab = c2 + d2 + 2cd

=> 2ab = 2cd

=> ab = cd

Khi đó a + b = c + d

=> (a + b)2020 = (c + d)2020

=> a2020 + b2020 + 2020a.b2019 + 2020a2019.b = c2 + d2 + 2020cd2019 + 2020c2019d

=> 2020ab(a2018 + b2018) + a2020 + b2020 = c2020 + d2020 + 2020cd(d2018 + c2018)

9 tháng 8 2020

a)\(\left(x^4+8x^2+16\right):\left(x^2+4\right)\)

\(=\left(x^2+4\right)^2:\left(x^2+4\right)\)

\(=x^2+4\)

b)\(\left(25-x^2\right):\left(x+5\right)\)

=\(\left(x^2-5^2\right):\left(x+5\right)\)

\(=\left(x-5\right)\left(x+5\right):\left(x+5\right)\)

\(=x-5\)

c)\(\left(x^3+1\right):\left(x^2-x+1\right)\)

\(=\left(x+1\right)\left(x^2-x+1\right):\left(x^2-x+1\right)\)

\(=x+1\)

9 tháng 8 2020

a) \(\left(x^4+8x^2+16\right):\left(x^2+4\right)\)\(=\left(x^2+4\right)^2:\left(x^2+4\right)\)\(=x^2+4\)

b) \(\left(25-x^2\right):\left(x+5\right)=\left(x-5\right).\left(x+5\right):\left(x+5\right)\)\(=x-5\)

c) \(=\left(x^3+1\right)\left(x^2-x+1\right)=\left(x+1\right)\left(x^2-x+1\right)\)\(=x+1\)

Học tốt

9 tháng 8 2020

\(p^2+2q^2=41\Rightarrow41-2q^2=p^2\Rightarrow p^2\) là số lẻ

=> p=2k+1 (k thuộc N*), thay vào=> q2=2k(k+1)-20

=> q chẵn mà q là số nguyên tối nên q=2

=> p2=49 => p=7

9 tháng 8 2020

A = \(\left(1+\frac{1}{3}\right)\left(1+\frac{1}{8}\right)\left(1+\frac{1}{15}\right)...\left(1+\frac{1}{n.n+n.2}\right)=\frac{4}{3}.\frac{9}{8}.\frac{16}{15}...\frac{n^2+2n+1}{n\left(n+2\right)}\)

\(=\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}...\frac{\left(n+1\right)^2}{n\left(n+2\right)}=\frac{2^2.3^2.4^2...\left(n+1\right)^2}{1.3.2.4.3.5...n\left(n+2\right)}=\frac{\left[2.3.4...\left(n+1\right)\right].\left[2.3.4...\left(n+1\right)\right]}{\left(1.2.3...n\right).\left[3.4.5..\left(n+2\right)\right]}\)

\(=\frac{\left(n+1\right).2}{n+2}\)

p/s : giải thích phần n2 + 2n + 1 = (n2 + n) + (n + 1) = n(n + 1) + (n + 1) = (n + 1).(n + 1) = (n + 1)2

9 tháng 8 2020

1.\(x^2-7x+6\)\(=x^2-6x-x+6\)\(=x\left(x-6\right)-\left(x-6\right)\)\(=\left(x-1\right)\left(x-6\right)\)

2.\(y^2+xy-2x^2=y+2xy-xy-2x^2\)\(=y\left(y-x\right)+2x\left(y-x\right)\)\(=\left(y+2x\right)\left(y-x\right)\)

Học tốt  !

9 tháng 8 2020

1. x2 - 7x + 6 

= x2 - x - 6x + 6

= x( x - 1 ) - 6( x - 1 )

= ( x - 6 )( x - 1 )

2. y2 + xy - 2x2

= y2 - xy + 2xy - 2x2

= y( y - x ) + 2x( y - x )

= ( y + 2x )( y - x ) 

9 tháng 8 2020

đề bài bạn ơi 

25 tháng 12 2021

Khi xóa đi 2 số bất kì và viết lại một số có giá trị bằng tổng của 2 số đã xóa lúc đầu cộng thêm 1 thì tổng lúc sau sẽ  hơn tổng lúc đầu là 1 đơn vị

=> Tổng các số sau mỗi bước sẽ tăng lên 1 đơn vị.

Tổng từ 1 đến 10 là: 1 + 2 + 3 + … + 10 = 55.

Tổng sau 9 lần chơi liên tiếp là: 55 + 9 = 64

9 tháng 8 2020

Ta có : Chiều cao tam giác ABC = Chiều cao tam giác tăng thêm

=> Chiều cao của tam giác ABC hay chiều cao tam giác tăng thêm là : 

75/2 x 2 : 5 = 15 m 

=> Đáy của tam giác dài : 150 x 2 : 15 = 30 cm

26 tháng 5 2021

Sao mik tính ra là 25 mà ta

30hay 25 vậy

9 tháng 8 2020

C1. ( 2x + 3y )2 + 2( 2x + 3y ) + 1 = [ ( 2x + 3y ) + 1 ]2

C2. ( x + 2 )2 = ( 2x - 1 )2

<=> ( x + 2 )2 - ( 2x - 1 )2 = 0

<=> [ x + 2 + ( 2x - 1 ) ][ x + 2 - ( 2x - 1 ) ] = 0

<=> [ 3x + 1 ][ 3 - x ] = 0

<=> \(\orbr{\begin{cases}3x+1=0\\3-x=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-\frac{1}{3}\\x=3\end{cases}}\)

b) ( x + 2 )2 - x + 4 = 0

<=> x2 + 4x + 4 - x + 4 = 0

<=> x2 - 3x + 8 = 0

Mà ta có x2 - 3x + 8 = x2 - 3x + 9/4 + 23/4 = ( x - 3/2 )2 + 23/4 ≥ 23/4 > 0 với mọi x 

=> Phương trình vô nghiệm

C3. a) A =  x2 - 2x + 5 = x2 - 2x + 4 + 1 = ( x - 2 )2 + 1

\(\left(x-2\right)^2\ge0\forall x\Rightarrow\left(x-2\right)^2+1\ge1\)

Dấu " = " xảy ra <=> x - 2 = 0 => x = 2

Vậy AMin = 1 , đạt được khi x = 2

b)B =  x2 - x + 1 = x2 - x + 1/4 + 3/4 = ( x - 1/2 )2 + 3/4

\(\left(x-\frac{1}{2}\right)^2\ge0\forall x\Rightarrow\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Dấu " = " xảy ra <=> x - 1/2 = 0 => x = 1/2

Vậy BMin = 3/4, đạt được khi x = 1/2

c) C = ( x - 1 )( x + 2 )( x + 3 )( x + 6 )

C = [ ( x - 1 )( x + 6 )][ ( x + 2 )( x + 3 ]

C = [ x2 + 5x - 6 ][ x2 + 5x + 6 ]

C = ( x2 + 5x )2 - 36 

\(\left(x^2+5x\right)^2\ge0\forall x\Rightarrow\left(x^2+5x\right)^2-36\ge-36\)

Dấu " = " xảy ra <=> x2 + 5x = 0

                          <=> x( x + 5 ) = 0

                          <=> x = 0 hoặc x + 5 = 0

                          <=> x = 0 hoặc x = -5

Vậy CMin = -36, đạt được khi x = 0 hoặc x = -5

d) D =  x2 + 5y2 - 2xy + 4y + 3

= ( x2 - 2xy + y2 ) + ( 4y2 + 4y + 1 ) + 2

= ( x - y )2 + ( 2y + 1 )2 + 2

\(\hept{\begin{cases}\left(x-y\right)^2\ge0\\\left(2y+1\right)^2\ge0\end{cases}}\Rightarrow\left(x-y\right)^2+\left(2y+1\right)^2\ge0\forall x,y\)

=> \(\left(x-y\right)^2+\left(2y+1\right)^2+2\ge2\)

Dấu " = " xảy ra <=> \(\hept{\begin{cases}x-y=0\\2y+1=0\end{cases}}\Rightarrow\hept{\begin{cases}x-y=0\\y=-\frac{1}{2}\end{cases}\Rightarrow}x=y=-\frac{1}{2}\)

Vậy DMin = 2 , đạt được khi x = y = -1/2

C4.  a) ( Cái này tìm được Min k tìm được Max )

A = x2 - 4x - 2 = x2 - 4x + 4 - 6 = ( x - 2 )2 - 6

\(\left(x-2\right)^2\ge0\forall x\Rightarrow\left(x-2\right)^2-6\ge-6\)

Dấu " = " xảy ra <=> x - 2 = 0 => x = 2

Vậy AMin = -6 , đạt được khi x = 2

b) B = -2x2 - 3x + 5 = -2( x2 + 3/2x + 9/16 ) + 49/8 = -2( x + 3/4 )2 + 49/8

\(-2\left(x+\frac{3}{4}\right)^2\le0\Rightarrow-2\left(x+\frac{3}{4}\right)+\frac{49}{8}\le\frac{49}{8}\)

Dấu " = " xảy ra <=> x + 3/4 = 0 => x = -3/4

Vậy BMax = 49/8 , đạt được khi x = -3/4

c) C = ( 2 - x )( x + 4 ) = -x2 - 2x + 8 = -( x2 + 2x + 1 ) + 9 = -( x + 1 )2 + 9 

\(-\left(x+1\right)^2\le0\Rightarrow-\left(x+1\right)^2+9\le9\)

Dấu " = " xảy ra <=> x + 1 = 0 => x = -1

Vậy CMax = 9 , đạt được khi x = -1

d) D = -8x2 + 4xy - y2 + 3 ( Cái này mình đang tính ạ )

C5. a) A = 25x2 - 20x + 7

A = 25x2 - 20x + 4 + 3

A = ( 5x2 - 2 )2 + 3 ≥ 3 > 0 với mọi x ( đpcm )

b) B = 9x2 - 6xy + 2y2 + 1

B = ( 9x2 - 6xy + y2 ) + y2 + 1

B = ( 3x - y )2 + y2 + 1 ≥ 1 > 0 với mọi x, y ( đpcm )

c) C = x2 - 2x + y2 + 4y + 6 

C = ( x2 - 2x + 1 ) + ( y2 + 4y + 4 ) + 1

C = ( x - 1 )2 + ( y + 2 )2 + 1 ≥ 1 > 0 với mọi x,y ( đpcm )

d) D = x2 - 2x + 2 

D = x2 - 2x + 1 + 1

D = ( x - 1 )2 + 1 ≥ 1 > 0 với mọi x ( đpcm )