K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 8 2020

Ta có : Chiều cao tam giác ABC = Chiều cao tam giác tăng thêm

=> Chiều cao của tam giác ABC hay chiều cao tam giác tăng thêm là : 

75/2 x 2 : 5 = 15 m 

=> Đáy của tam giác dài : 150 x 2 : 15 = 30 cm

26 tháng 5 2021

Sao mik tính ra là 25 mà ta

30hay 25 vậy

9 tháng 8 2020

C1. ( 2x + 3y )2 + 2( 2x + 3y ) + 1 = [ ( 2x + 3y ) + 1 ]2

C2. ( x + 2 )2 = ( 2x - 1 )2

<=> ( x + 2 )2 - ( 2x - 1 )2 = 0

<=> [ x + 2 + ( 2x - 1 ) ][ x + 2 - ( 2x - 1 ) ] = 0

<=> [ 3x + 1 ][ 3 - x ] = 0

<=> \(\orbr{\begin{cases}3x+1=0\\3-x=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-\frac{1}{3}\\x=3\end{cases}}\)

b) ( x + 2 )2 - x + 4 = 0

<=> x2 + 4x + 4 - x + 4 = 0

<=> x2 - 3x + 8 = 0

Mà ta có x2 - 3x + 8 = x2 - 3x + 9/4 + 23/4 = ( x - 3/2 )2 + 23/4 ≥ 23/4 > 0 với mọi x 

=> Phương trình vô nghiệm

C3. a) A =  x2 - 2x + 5 = x2 - 2x + 4 + 1 = ( x - 2 )2 + 1

\(\left(x-2\right)^2\ge0\forall x\Rightarrow\left(x-2\right)^2+1\ge1\)

Dấu " = " xảy ra <=> x - 2 = 0 => x = 2

Vậy AMin = 1 , đạt được khi x = 2

b)B =  x2 - x + 1 = x2 - x + 1/4 + 3/4 = ( x - 1/2 )2 + 3/4

\(\left(x-\frac{1}{2}\right)^2\ge0\forall x\Rightarrow\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Dấu " = " xảy ra <=> x - 1/2 = 0 => x = 1/2

Vậy BMin = 3/4, đạt được khi x = 1/2

c) C = ( x - 1 )( x + 2 )( x + 3 )( x + 6 )

C = [ ( x - 1 )( x + 6 )][ ( x + 2 )( x + 3 ]

C = [ x2 + 5x - 6 ][ x2 + 5x + 6 ]

C = ( x2 + 5x )2 - 36 

\(\left(x^2+5x\right)^2\ge0\forall x\Rightarrow\left(x^2+5x\right)^2-36\ge-36\)

Dấu " = " xảy ra <=> x2 + 5x = 0

                          <=> x( x + 5 ) = 0

                          <=> x = 0 hoặc x + 5 = 0

                          <=> x = 0 hoặc x = -5

Vậy CMin = -36, đạt được khi x = 0 hoặc x = -5

d) D =  x2 + 5y2 - 2xy + 4y + 3

= ( x2 - 2xy + y2 ) + ( 4y2 + 4y + 1 ) + 2

= ( x - y )2 + ( 2y + 1 )2 + 2

\(\hept{\begin{cases}\left(x-y\right)^2\ge0\\\left(2y+1\right)^2\ge0\end{cases}}\Rightarrow\left(x-y\right)^2+\left(2y+1\right)^2\ge0\forall x,y\)

=> \(\left(x-y\right)^2+\left(2y+1\right)^2+2\ge2\)

Dấu " = " xảy ra <=> \(\hept{\begin{cases}x-y=0\\2y+1=0\end{cases}}\Rightarrow\hept{\begin{cases}x-y=0\\y=-\frac{1}{2}\end{cases}\Rightarrow}x=y=-\frac{1}{2}\)

Vậy DMin = 2 , đạt được khi x = y = -1/2

C4.  a) ( Cái này tìm được Min k tìm được Max )

A = x2 - 4x - 2 = x2 - 4x + 4 - 6 = ( x - 2 )2 - 6

\(\left(x-2\right)^2\ge0\forall x\Rightarrow\left(x-2\right)^2-6\ge-6\)

Dấu " = " xảy ra <=> x - 2 = 0 => x = 2

Vậy AMin = -6 , đạt được khi x = 2

b) B = -2x2 - 3x + 5 = -2( x2 + 3/2x + 9/16 ) + 49/8 = -2( x + 3/4 )2 + 49/8

\(-2\left(x+\frac{3}{4}\right)^2\le0\Rightarrow-2\left(x+\frac{3}{4}\right)+\frac{49}{8}\le\frac{49}{8}\)

Dấu " = " xảy ra <=> x + 3/4 = 0 => x = -3/4

Vậy BMax = 49/8 , đạt được khi x = -3/4

c) C = ( 2 - x )( x + 4 ) = -x2 - 2x + 8 = -( x2 + 2x + 1 ) + 9 = -( x + 1 )2 + 9 

\(-\left(x+1\right)^2\le0\Rightarrow-\left(x+1\right)^2+9\le9\)

Dấu " = " xảy ra <=> x + 1 = 0 => x = -1

Vậy CMax = 9 , đạt được khi x = -1

d) D = -8x2 + 4xy - y2 + 3 ( Cái này mình đang tính ạ )

C5. a) A = 25x2 - 20x + 7

A = 25x2 - 20x + 4 + 3

A = ( 5x2 - 2 )2 + 3 ≥ 3 > 0 với mọi x ( đpcm )

b) B = 9x2 - 6xy + 2y2 + 1

B = ( 9x2 - 6xy + y2 ) + y2 + 1

B = ( 3x - y )2 + y2 + 1 ≥ 1 > 0 với mọi x, y ( đpcm )

c) C = x2 - 2x + y2 + 4y + 6 

C = ( x2 - 2x + 1 ) + ( y2 + 4y + 4 ) + 1

C = ( x - 1 )2 + ( y + 2 )2 + 1 ≥ 1 > 0 với mọi x,y ( đpcm )

d) D = x2 - 2x + 2 

D = x2 - 2x + 1 + 1

D = ( x - 1 )2 + 1 ≥ 1 > 0 với mọi x ( đpcm )

9 tháng 8 2020

rút gọn bằng: 12/31

hok tốt

\(\left(a\right)\frac{34-x}{30}=\frac{5}{6}\)

\(\frac{34-x}{30}=\frac{25}{30}\)

34 - x = 25

x = 34 - 25 = 9

\(\left(b\right)\frac{x+13}{34}=\frac{12}{17}\)

\(\frac{x+13}{34}=\frac{24}{34}\)

x + 13 = 24

x = 24 - 13 = 11

\(\left(c\right)\left(x+\frac{1}{3}\right)+\left(x+\frac{1}{9}\right)+\left(x+\frac{1}{27}\right)+\left(x+\frac{1}{81}\right)=\frac{56}{81}\)

\(4x+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}=\frac{56}{81}\)

Đặt \(A=\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}\)

Ta có : \(3A=1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}\)

\(3A-A=1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}-\frac{1}{3}-\frac{1}{9}-\frac{1}{27}-\frac{1}{81}\)

\(2A=1-\frac{1}{81}=\frac{80}{81}\)

\(A=\frac{80}{81}\div2=\frac{40}{81}\)

\(\Rightarrow4x+\frac{40}{81}=\frac{56}{81}\)

\(4x=\frac{56}{81}-\frac{40}{81}\)

\(4x=\frac{16}{81}\)

\(x=\frac{16}{81}\div4=\frac{4}{81}\)

9 tháng 8 2020

a, \(\frac{34-x}{30}=\frac{5}{6}\Leftrightarrow\frac{34-x}{30}=\frac{25}{30}\)

\(\Leftrightarrow34-x=25\Leftrightarrow x=9\)

b, \(\frac{x+13}{34}=\frac{12}{17}\Leftrightarrow\frac{x+13}{34}=\frac{24}{34}\)

\(\Leftrightarrow x+13=24\Leftrightarrow x=11\)

9 tháng 8 2020

what là cái gì

9 tháng 8 2020

What có nghĩa là cái gì

9 tháng 8 2020

1, cánh cửa

2,con mẻ

3,cái địu

4,cà tím , cà muối

5,nước đất

6,con đà điểu

7,cầu rồng

8,chuột rút

mình ko giỏi trả lời hỏi mẹo cho lắm mong bn k đúng cho.

9 tháng 8 2020

1.Cái lỗ

2.ko bt

3. Cà tím

4.Nước biển

5.Chim yến

6.Cầu khỉ

7.Chuột trũi :)

9 tháng 8 2020

 \(\left(x-y\right)^5+\left(y-z\right)^5+\left(z-x\right)^5\)

\(=x^5-5x^4y+10x^3y^2-10x^2y^3+5xy^4-y^5+y^5-5y^4z+10y^3z^2-10y^2z^3+5yz^4-z^5\)\(+z^5-5z^4x+10z^3x^2-10z^2x^3+5zx^4-x^5\)

\(=5\left(-x^4y+2x^3y^2-2x^2y^3+xy^4-y^4z+2y^3z^2-2y^2z^3+yz^4-z^4x+2z^3x^2-2z^2x^3+zx^4\right)\)

9 tháng 8 2020

Đặt B = \(\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{99.100}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}+\frac{1}{100}-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)

\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}+\frac{1}{100}-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)\)

\(=\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\)

Đặt C = \(\frac{1}{51.100}+\frac{1}{52.99}+...+\frac{1}{75.76}\)(sửa lại đề)

=> 151C = \(\frac{151}{51.100}+\frac{151}{52.99}+...+\frac{151}{75.76}\)

=> 151C =\(\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}\)

=> C = \(\frac{\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}}{151}\)

Khi A = B : C 

\(\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\right):\left(\frac{\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}}{151}\right)=151\)

Vậy A = 151

Khi gấp đôi đáy và giảm chiều cao 3 lần thì diện tích mới là : 50 * 2 / 3 = 100/3 ( m2 )

Đ/s: 100/3m2