CMR: các bất phương trình sau vô nghiệm:
a) x2-2x+3 < -2x+3
b) X2+2x+2\(\le\)0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:Nếu k<1, ta có:
\(\left(3k+1\right)\left(4k+2\right)\left(5k+3\right)< \left(3.1+1\right)\left(4.1+2\right)\left(5.1+3\right)=192\left(L\right)\)
Nếu k=1,ta có:
\(\left(3k+1\right)\left(4k+2\right)\left(5k+3\right)=\left(3.1+1\right)\left(4.1+2\right)\left(5.1+3\right)=192\)
Nếu k>1,ta có:
\(\left(3k+1\right)\left(4k+2\right)\left(5k+3\right)>\left(3.1+1\right)\left(4.1+2\right)\left(5.1+3\right)=192\left(L\right)\)
Vậy k=1
\(\frac{40}{57}< \frac{40}{55}< \frac{41}{55}\)
\(VP=\frac{AH.AK+CH.CE+BH.BD+CH.CE-\left(AH.AK+BH.BD\right)}{BH.BD+CH.CE+AH.AK+BH.BD-\left(AH.AK+CH.CE\right)}\)
\(=\frac{2CH.CE}{2BH.BD}=\frac{CK.CB}{BK.BC}=\frac{KC}{KB}\) (DPCM)
Bài làm:
a) Ta có: \(x^2+1< 1\)
\(\Leftrightarrow x^2< 0\)
Mà \(x^2\ge0\left(\forall x\right)\)
=> vô lý
=> BPT vô nghiệm
b) \(x^2+2x< 2x\)
\(\Rightarrow x^2< 0\)
tương tự a BPT vô nghiệm
Nếu có P => Q thì ta gọi P là điều kiện cần của Q và đồng thời Q cũng là điều kiện đủ của P
Ta gọi mệnh đề P : a và b - chúng đều là 2 số hữu tỉ, Q : tổng a + b là số hữu tỉ
Mệnh đề ở gt : P => Q
Mệnh đề A : P => Q
Mệnh đề B : Q => P
Mệnh đề C : Q => P
Mệnh đề D : A,B,C đều sai
=> Do đó chúng ta chọn đáp án A là hợp lí nhất.
về phần đọc mik chịu còn về bài 4 thì siêng năng , trường làng
bài 5 số tám ống nhòm
xâu kim chùm nhãn
xong rồi mong bn ti ck
có rất nhiều số lẻ có 4 chữ số khác nhau
Đó là :1235, 2135, 3127, 8793,4867,6789,9087,3851, 6543.............
Bài làm:
a) Ta có: \(x^2-2x+3< -2x+3\)
\(\Rightarrow x^2< 0\)
=> vô lý
=> vô nghiệm
b) \(x^2+2x+2\le0\)
\(\Leftrightarrow\left(x+1\right)^2+1\le0\)
\(\Rightarrow\left(x+1\right)^2\le-1\)
=> vô lý
=> vô nghiệm
a, \(x^2-2x+3< -2x+3\Leftrightarrow x^2< 0\)
Mà \(x^2\ge0\forall x\)=> BFT vô nghiệm
b, \(x^2+2x+2\le0\)
\(\Leftrightarrow x^2+2x+1\le1\)
\(\Leftrightarrow\left(x+1\right)^2\le1\)Mà \(\left(x+1\right)^2\ge0\)
=> BFT vô nghiệm