K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 9 2020

\(\sqrt{x^2+x+2}+\sqrt{x^2+x+7}=5\)\(< =>\sqrt{x^2+x+2}-\sqrt{4}+\sqrt{x^2+x+7}-\sqrt{9}=0\)

\(< =>\frac{x^2+x+2-4}{\sqrt{x^2+x+2}+\sqrt{4}}+\frac{x^2+x+7-9}{\sqrt{x^2+x+7}+\sqrt{9}}=0\)

\(< =>\left(x^2+x-2\right)\left(\frac{1}{\sqrt{x^2+x+2}+\sqrt{4}}+\frac{1}{\sqrt{x^2+x+7}+\sqrt{9}}\right)=0\)

\(< =>x^2+x-2=0\)( do cái cục trong ngoặc khác 0 )

\(< =>x^2-x+2x-2=0< =>x\left(x-1\right)+2\left(x-1\right)=0\)

\(< =>\left(x+2\right)\left(x-1\right)=0< =>\orbr{\begin{cases}x=-2\\x=1\end{cases}}\)

chắc không có đk đâu nhỉ ?

21 tháng 9 2020

dòng 2 xuống dòng 3 là sao nhỉ

21 tháng 9 2020

\(\frac{150}{100}=1\frac{1}{2};\frac{90}{150}=\frac{3}{5};\frac{678}{1000}=\frac{339}{500}\)

Học tốt!!!

21 tháng 9 2020

Kết quả quá to!!!

21 tháng 9 2020

\(C=\sqrt{12}+\sqrt{27}-\sqrt{48}=2\sqrt{3}+3\sqrt{3}-4\sqrt{3}=\sqrt{3}\)

21 tháng 9 2020

C=1.1732050808

21 tháng 9 2020

để mik tạo câu hỏi rồi bạn mik nha

21 tháng 9 2020

đó là2

22 tháng 9 2020

2 giờ 30 phút = 2,5 giờ

Chiều dài quãng đường AB là

14x2,5=35 km

Thời gian người đó đi từ B về A là

35:50=0,7 giờ = 42 phút

Để về nhà lúc 10 giờ thì người đó phải khởi hành lúc 9h18'

21 tháng 9 2020

ghghfgh

21 tháng 9 2020

482 + 522 + 52.96

= 482 + 2.48.52 + 522

= ( 48 + 52 )2

= 1002 = 10 000

21 tháng 9 2020

23 . ( 43 - x) = 23

43-x=23:23

43-x=1

x=43-1

x=42

21 tháng 9 2020

23 . ( 43 - x ) = 23

43 - x            = 23 : 23

43 - x            = 1

x                   = 43 -1

x                   = 42

Vậy x = 42 

Học tốt!!!

1) Các phân số trên có các mẫu số là 3, 7, 9

Vậy để a nhỏ nhất làm các tích trên là số nguyên thì a phải là BCNN(3,7,9) = 63

=> a=63

2) \(\frac{4}{5}< \frac{a}{b}< \frac{14}{15}\Rightarrow\frac{4b}{5}< a< \frac{14b}{15}\) 

\(\Rightarrow\frac{32b}{5}< 8a< \frac{112b}{15}\Rightarrow\frac{62b}{5}< 8a+6b< \frac{202b}{15}\Rightarrow\frac{62}{5}b< 2012< \frac{202}{15}b\)

\(\Rightarrow149< b\le162\)Vì \(a=\frac{2012-6b}{8}\Rightarrow130< a\le139\)

Xét \(8a+6b=2012\Leftrightarrow4a+3b=1006\)Vì 4a và 1006 là các số chẵn nên 3b phải chẵn => b chẵn

Vì 4a chia hết cho 4 còn 1006 chia 4 dư 2 nên 3b chia 4 dư 2 => b chia 4 dư 2

Lúc này b chỉ có thể là 150, 154, 158, 162 --> thế vào tìm a

Vậy các phân số cần tìm là: \(\frac{139}{150},\frac{136}{154},\frac{133}{158},\frac{130}{162}\)

21 tháng 9 2020

Đặt \(u=\sqrt{x+1};t=\sqrt{1-x};\text{đ}k:-1\le x\le1\)

Phương trình trở thành:

\(u+2u^2=-t^2+t+3ut\Leftrightarrow\left(u-t\right)^2+u\left(u-t\right)+\left(u-t\right)=0\)

\(\Leftrightarrow\left(u-t\right)\left(2u-t+1\right)=0\Leftrightarrow\orbr{\begin{cases}u=t\\2u+1=t\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x+1}=\sqrt{1-x}\\2\sqrt{x+1}+1=\sqrt{1-x}\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{-24}{25}\end{cases}}}\)

21 tháng 9 2020

mình dùng cách khác nhé :((

\(\sqrt{x+1}+2\left(x+1\right)=x-1+\sqrt{1-x}+3\sqrt{1-x^2}\left(đk:-1\le x\le1\right)\)

\(< =>\sqrt{x+1}-1+2x+2-3=x-1+\sqrt{1-x}-1+3\sqrt{1-x^2}-3\)

\(< =>\frac{x}{\sqrt{x+1}+1}+2x-1-x+1=-\frac{x}{\sqrt{1-x}+1}+\frac{9\left(1-x^2-1\right)}{3\sqrt{1-x^2}+3}\)

\(< =>\frac{x}{\sqrt{x+1}+1}+x+\frac{x}{\sqrt{1-x}+1}+\frac{9x^2}{3\sqrt{1-x^2}+3}=0\)

\(< =>x\left(\frac{1}{\sqrt{x+1}+1}+1+\frac{1}{\sqrt{1+x}+1}+\frac{9x}{3\sqrt{1-x^2}+3}\right)=0< =>x=0\)

rồi đến đây dùng đk đánh giá cái ngoặc khác 0 là ok