Chứng minh: \(\frac{11}{15}< \frac{1}{21}+\frac{1}{22}+\frac{1}{23}+...+\frac{1}{60}< \frac{3}{2}\).
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Her son almost takes after her husband. Sometimes i can't distinguish between them
\(5x-206=2^4.4\)
\(\Leftrightarrow5x-206=2^6\)
\(\Leftrightarrow5x-206=64\)
\(\Leftrightarrow5x=270\Leftrightarrow x=54\)
Bài làm:
Ta có: \(5x-206=2^4.4\)
\(\Leftrightarrow5x=206+64\)
\(\Leftrightarrow5x=270\)
\(\Rightarrow x=54\)
\(a,24+5.x=7^5:7^3\)
\(24+5x=7^2\)
\(5x=7^2-24\)
\(5x=25\)
\(x=25:5\)
\(x=5\)
Học tốt
24+5.x=7^5:7^3
24+5.x=7^2
24+5.x=49
5.x=49-24
5.x=25
x=25:5
x=5
vậy x=5
ta gọi bây giờ là x và xắp tới là y ta có:
x+y=24 [vì một ngày có 24 giờ]
x=3 y
x nhân y/3 = 24
4 x = 24 nhân 3
x= 24 nhân 3 chia 4
x=18
vậy vậy bây giờ là cách lúc 12 giờ đêm 18 giờ.
Bài làm:
Ta có: \(M=\sqrt{x^2+2x+5}=\sqrt{\left(x+1\right)^2+4}\)
Mà \(\left(x+1\right)^2+4\ge4\left(\forall x\right)\)
=> \(M\ge2\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(\left(x+1\right)^2=0\Rightarrow x=-1\)
Vậy \(M_{Min}=2\Leftrightarrow x=-1\)
\(M=\sqrt{x^2+2x+5}\)
\(\Leftrightarrow M=\sqrt{x^2+2x+1+4}\)
\(\Leftrightarrow M=\sqrt{\left(x+1\right)^2+4}\ge\sqrt{4}=2\)
Min M = 2
\(\Leftrightarrow x=-1\)
tách bất đẳng thức trên ta có \(\frac{1}{21}+\frac{1}{22}+\frac{1}{23}+...+\frac{1}{60}\)gọi biều thức này là A
ta có \(A=\frac{1}{21}+\frac{1}{22}+\frac{1}{23}+...+\frac{1}{60}\)
\(A=\left(\frac{20}{20.21}+\frac{21}{21.22}+\frac{22}{22.23}+...+\frac{39}{39.40}\right)+\left(\frac{40}{40.41}+\frac{41}{41.42}+...+\frac{59}{59.60}\right)\)
\(\Rightarrow A>20.\left(\frac{20}{20.21}+\frac{21}{21.22}+\frac{22}{22.23}+...+\frac{39}{39.40}\right)+40.\left(\frac{40}{40.41}+\frac{41}{41.42}+...+\frac{59}{59.60}\right)\)nhân vế trái vs 20 vế phải 40
\(\Rightarrow A>20.\left(\frac{1}{20}-\frac{1}{40}\right)+40.\left(\frac{1}{40}-\frac{1}{60}\right)\)
\(\Rightarrow A>\frac{5}{6}>\frac{11}{5}\left(1\right)\)
ta có \(A< 40.\left(\frac{20}{20.21}+\frac{21}{21.22}+\frac{22}{22.23}+...+\frac{39}{39.40}\right)+60.\left(\frac{40}{40.41}+\frac{41}{41.42}+...+\frac{59}{59.60}\right)\)
\(\Rightarrow A< 40.\left(\frac{1}{20}-\frac{1}{40}\right)+60.\left(\frac{1}{40}-\frac{1}{60}\right)\)
\(\Rightarrow A< \frac{3}{2}\left(2\right)\)
từ (1) và (2)
\(\Rightarrow\frac{11}{15}< A< \frac{3}{2}\)
\(\Rightarrow\frac{11}{15}< \text{}\text{}\frac{1}{21}+\frac{1}{22}+\frac{1}{23}+..+\frac{1}{60}< \frac{3}{2}\)(ĐPCM)
Đáp án là mình chứng minh được.