Cho đường tròn và điểm M ở ngoài đường tròn với OM >2R. Vẽ hai tiếp tuyến MA, MB và đường kính AD của đường tròn(O) (A, B là các tiếp điểm).Gọi C là giao điểm của MD với đường tròn(O) , H là giao điểm MO với AB . a)cm H là trung điểm AB. b)cm AC vuông góc với MD và tứ giác AHCM nội tiếp c)cm góc AMC= 1/2 góc CHD. d)gọi K là giao điểm MD với AB , I là giao điểm của BC với MH. cm 3 đường thẳng MB, IK, và HD đồng quy. Mấy bạn giải giúp mình nha, cảm ơn các bạn lắm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
MÌnh nghĩ thế này ko bt đúng ko
Ta có: \(\hept{\begin{cases}x^2+1\ge2x\\x^2+y^2\ge2xy\end{cases}}\)
\(\Rightarrow\left(x^2+1\right)\left(x^2+y^2\right)\ge4x^2y\)
\(\Rightarrow\left(x^2+1\right)\left(x^2+y^2\right)-4x^2y\ge0\)
Dấu = xảy ra khi x=y=1
Vậy (x;y)=(1;1)
Ta có pt \(\Leftrightarrow\left(x^2+1\right)\left(x^2+y^2\right)=4x^2y\)
Áp dụng BĐt cô-si , ta có
\(x^2+1\ge2\sqrt{x^2}=2x;x^2+y^2\ge2xy\)
Nhân vào, ta có \(\left(x^2+1\right)\left(y^2+x^2\right)\ge4x^2y\)
Dấu = xảy ra <=> x=y=1
^_^
Ta có BĐt cầnd chứng minh \(\Leftrightarrow\frac{\left(a+b\right)^2}{a^2+4}\le\frac{3}{2}\Leftrightarrow2\left(a+b\right)^2\le3\left(a^2+4\right)\)
<=>\(2\left(a^2+b^2+2ab\right)\le3\left(a^2+4\right)\Leftrightarrow2\left(4+2ab\right)\le12+3a^2\)
<=>\(4ab\le3a^2+4=4a^2+b^2\)
<=>\(0\le4a^2+b^2-4ab\Leftrightarrow0\le\left(2a-b\right)^2\left(LĐ\right)\)
=> BĐt cần chứng minh luôn đúng
^_^
Cho đường tròn (O) và dây cung AB( AB không phải là đường kính) cố định. P là điểm di động trên đoạn AB.( P khác A,B và P khác trung điểm của AB). Đường tròn tâm C, D đi qua điểm P tiếp xúc với đường tròn (O) lần lượt tại A và B. Hai đường tròn (C) , (D). cắt nhau tại N( N khác P) . CMR:
a. ˆANP=ˆBNPANP^=BNP^ và 4 điểm O,D,C,N cùng thuộc 1 đường tròn.
b. Đường trung trực của ON luôn đi qua điểm cố định khi P di động
Theo talet ta có:
\(\hept{\begin{cases}x1+x2=-\frac{b}{a}=m-2\left(1\right)\\x1.x2=\frac{c}{a}=-m^2+3m-4\left(2\right)\end{cases}}\)
Theo đề bài ta có: \(\left|\frac{x1}{x2}\right|=2\)
TH1: \(x1=2.x2\)
Thay vào (1) ta đc: \(3.x2=m-2\Leftrightarrow x2=\frac{m-2}{3}\)
Thay \(x1=2.\frac{m-2}{3};x2=\frac{m-2}{3}\)vào (2) ta đc:
\(\frac{2.\left(m-2\right)^2}{9}=-m^2+3m-4\)(vô nghiệm)
TH2: \(x1=-2.x2\)
Thay vào (1) ta đc: \(-x2=m-2\Leftrightarrow x2=2-m\)
Thay \(x1=-2.\left(2-m\right);x2=2-m\)vào (2) ta đc:
\(-2\left(m-2\right)^2=-m^2+3m-4\Leftrightarrow\orbr{\begin{cases}m=4\\m=1\end{cases}}\)
Vậy m=4 hoặc m=1
Giải hệ pt này là ra
\(\hept{\begin{cases}x_1+x_2=m-2\\x_1.x_2=-m^2+3m-4\\\left|\frac{x_1}{x_2}\right|=2\end{cases}}\)
Ta có: a , b , c > 0 => a , b , c là 3 số thực dương thỏa mãn điều kiện: ab + ac + bc = 0
Áp dụng tính chất tỉ dãy số bằng nhau ta có:
\(\frac{a^4}{b+3c}+\frac{b^4}{c+3a}+\frac{c^4}{a+3b}=\frac{a^4+b^4+c^4}{b+3+c+3a+a+3b}\)
\(\Leftrightarrow\frac{a^4+b^4+c^4}{4a+4b+4c}=\frac{a^4+b^4+c^4}{4\left(a+b+c\right)}=\frac{3}{4}\) (Đúng với đề bài)
\(\RightarrowĐPCM\)
Ps; Không chắc nha! Mình chưa học lớp 9
Cauchy-Schwarz ta có:
\(\left(1+9\right)\left(x^2+y^2\right)\ge\left(x+3y\right)^2\ge1\)
\(10\left(x^2+y^2\right)\ge1\Leftrightarrow A\ge\frac{1}{10}\)
Tự tìm dấu "="
M A B D O H C K I A B C D S O M
a) Áp dụng tính chất 2 tiếp tuyến giao nhau thì MA = MB. Do đó OM là trung trực đoạn AB.
Vì OM giao AB tại H nên H là trung điểm của AB (đpcm).
b) Ta thấy ^ABD chắn nửa đường tròn (O) nên BD vuông góc với AB, có AB vuông góc OM
=> BD // OM => ^HMC = ^BDC (So le trong) = ^HAC => 4 điểm A,H,C,M cùng thuộc 1 đường tròn
Hay tứ giác AHCM nội tiếp (đpcm).
c) Áp dụng hệ thức lượng ta có MC.MD = MH.MO (= MB2) => Tứ giác DOHC nội tiếp
Vì ^ODC = ^OCD nên ^HO là phân giác ngoài của ^CHD. Lai có HO vuông góc HB
Suy ra HB là phân giác ^CHD => ^CHD = 2.^BHC = 2.AMC (Do tứ giác AHCM nội tiếp) (đpcm).
d) Bổ đề: Xét hình thang ABCD (AB // CD) có AC cắt BD tại O, M là trung điểm CD. Khi đó AD,BC,MO đồng quy.
Thật vậy: Gọi AD cắt BC tại S. Ta có \(\frac{OA}{OC}=\frac{AB}{CD}=\frac{SA}{SD}\). Từ đó: \(\frac{OA}{OC}.\frac{MC}{MD}.\frac{SD}{SA}=1\)
Theo ĐL Melelaus cho \(\Delta\)ACD thì 3 điểm M,O,S thẳng hàng. Tức là BC,AD,MO cắt nhau tại S.
Giải bài toán: Có ^HCB = ^HCK + ^BCD = ^HAM + ^BAD = ^MAO = 900 => HC vuông góc BI
Áp dụng hệ thức lượng trong tam giác vuông: IH2 = IB.IC
Mặt khác dễ thấy ^IMC= ^BDC = ^IBM => \(\Delta\)CIM ~ \(\Delta\)MIB (g.g) => IM2 = IB.IC
Suy ra IH = IM. Lúc đó, xét hình thang BDHM (HM // BD), MD cắt BH tại K, I là trung điểm HM
Ta thu được MB,HD,IK đồng quy (Theo bổ đề) (đpcm).