Tính A= \(cos^220^o+cos^230^o+cos^240^o+cos^250^o+cos^260^o+cos^270^o\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Với giá trị của x thì phân thức được xác định là : \(x^2-1\ne0\)
=> \(x^2\ne\pm1\)
b) Rút gọn A : \(A=\frac{x^2+2x+1}{x^2-1}=\frac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}=\frac{x+1}{x-1}\)
c) Tại x = -2 thì \(A=\frac{\left(-2\right)+1}{\left(-2\right)-1}=\frac{-1}{-3}=\frac{1}{3}\)
d) Ta có : \(A=\frac{x^2+2x+1}{x^2-1}=\frac{x+1}{x-1}=\frac{x-1+2}{x-1}=1+\frac{2}{x-1}\)
=> \(2⋮x-1\)=> x - 1 \(\in\)Ư(2) = { \(\pm1;\pm2\)}
+) x - 1 = 1 => x = 2 ; x - 1 = -1 => x = 0
+) x - 1 = 2 => x = 3 ; x - 1 = -2 => x = -1
Vậy : ....
a) Phân thức xác định
\(\Leftrightarrow x^2-1\ne0\)
\(\Leftrightarrow x\ne\pm1\)
Vậy với \(x\ne\pm1\)thì giá trị của phân thức đã cho xác định.
b) \(A=\frac{x^2+2x+1}{x^2-1}\)
\(\Leftrightarrow A=\frac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}\)
\(\Leftrightarrow A=\frac{x+1}{x-1}\)
c) x = -2 ( thỏa mãn đkxđ )
Vậy \(A=\frac{-2+1}{-2-1}=\frac{-1}{-3}=\frac{1}{3}\)
d) A có giá trị nguyên
\(\Leftrightarrow\frac{x+1}{x-1}\)có giá trị nguyên
\(\Leftrightarrow\frac{x+1}{x-1}=\frac{x-1+2}{x-1}=1+\frac{2}{x-1}\)có giá trị nguyên
\(\Leftrightarrow x-1\inƯ\left(2\right)\)
\(\Leftrightarrow x=\left\{2;3;0\right\}\)
Số | 0,59 |
là số tự nhiên (∈ ℕ) => Sai
là số nguyên (∈ ℤ) => Đúng
là số hữu tỉ (∈ ℚ) => Đúng
số chứa ít nhất 1 chữ số 1 thì số đó có thể chứa 1 chữ số 1 hoặc chứa 2 chữ số 1 hoặc chứa tất cả các chũ số 1
- có 900 số có 3 chữ số
-Tìm các số có 3 chữ số đều khác chữ số 1 suy ra : số đó chỉ được tạo thành bởi các chữ số : 0 ;2; 3........;9
chữ số hàng trăm có 8 cách chọn
chữ số hàng đơn vị có 9 cách chọn
suy ra : 8 x 9 x9 =648 số có 3 chữ số đều khác 1
có tất cả là : 900 - 648 = 252 số
Ta có: ( x - y) z3 + ( y - z ) x3 + ( z - x ) y3
= ( x - y ) z3 + ( y - z )x3 + ( z - y)y3 + ( y - x ) y3
= ( x - y ) ( z3 - y3 ) + ( y - z ) ( x3 - y3)
= ( x - y ) ( z - y ) ( z2 + zy + y2 ) + ( y - z ) ( x - y) ( x2 + xy + y2 )
= ( x - y ) ( y - z ) ( x2 + xy + y2 - z2 - zy - y2)
= ( x - y ) ( y - z ) [ ( x2 - z2) + ( xy - zy) ]
= ( x - y ) ( y - z ) [ ( x - z ) ( x + z ) + y ( x - z ) ]
= ( x - y ) ( y - z ) ( x - z ) ( x + y + z )
(x - y).z3 + (y - z).x3 + (z - x).y3
= z3(x - y) + x3y - x3z + y3z - xy3
= z3(x - y) + xy(x2 - y2) - z(x3 - y3)
= z3(x - y) + xy(x - y)(x + y) - z(x - y)(x2 + xy + y2)
= (x - y)(z3 + x2y + xy2 - x2z - xyz - y2z)
= (x - y)[z(z2 - x2) + xy(x - z) + y2(x - z)]
= (x - y)[z(z - x)(z + x) - xy(z- x) - y2(z - x)]
= (x - y)(z - x)(z2 + xz - xy - y2)
= (x - y)(z - x)[(y - z)(y + z) - x(y - z)]
= (x - y)(z - x)(y - z)(y + z - x)
Gọi số có 3 chữ số cần tìm là abc
Ta có 9abc = 41 x abc
=> 9000 + abc = 41 x abc
=> 9000 = 40 x abc
=> abc = 225
Vậy số cần tìm là 225
Áp dụng TC của dãy tỉ số bằng nhau , ta có :
\(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}=\frac{a+b+c}{2a+2b+2c}=\frac{1}{2}\)
\(\Rightarrow\hept{\begin{cases}\frac{a}{b+c}=\frac{1}{2}\\\frac{b}{c+a}=\frac{1}{2}\\\frac{c}{a+b}=\frac{1}{2}\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{b+c}{a}=2\\\frac{c+a}{b}=2\\\frac{a+b}{c}=2\end{cases}}}\)
\(\Rightarrow P=2+2+2=6\)
Ta có :\(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}\)
=> \(\frac{a}{b+c}+1=\frac{b}{c+a}+1=\frac{c}{a+b}+1\)
=> \(\frac{a+b+c}{b+c}=\frac{a+b+c}{a+c}=\frac{a+b+c}{a+b}\)
Nếu a + b + c = 0
=> a + b = - c
a + c = -b
b + c = -a
Khi đó P = \(\frac{-c}{c}+\frac{-b}{b}+\frac{-a}{a}=-1+\left(-1\right)+\left(-1\right)=-3\)
Nếu a + b + c \(\ne0\)
=> \(\frac{1}{b+c}=\frac{1}{c+a}=\frac{1}{a+b}\)
=> b + c = c + a = a + b
=> a = b = c
Khi đó P = \(\frac{2c}{c}+\frac{2b}{b}+\frac{2a}{a}=2+2+2=6\)
Vậy khi a + b + c = 0 => P = -3
khi a + b + c \(\ne\)0 => P = 6
P(x) chia hết cho x - 2
=> P(2) = 0
=> \(2^4+m.2^3-55.2^2+2n-156=0\)<=> 8m + 2n = 360 => 4m + n = 180
P(x) chia hết cho x - 3
=> P(3) = 0
=> \(3^4+m.3^3-55.3^2+3n-156=0\)<=> 27m + 3n = 570 => 9m + n = 190
=> ( 9m + n ) - ( 4m+ n ) = 190 - 180
=> 5m = 10
=> m = 2
=> 4.2 + n = 180 => n = 172
Vậy P(x) = \(x^4+2x^3-55x^2+172x-156\)
P(x) chia hết cho x-2<=>P(2)=24 + 8m - 220 +2n - 156 =0 (1)
P(x) chia hết cho x-3<= >P(3)=34 + 27m - 495 + 3n -156=0 (2)
Từ (1) và (2) suy ra:
{16+8m-220+2n-156=0 <=>8m+2n=360
{81+27m-495+3n-156=0 <=>27m+3n=570
Giair hệ phương trình ta được
m=2 và n=172
thay m,n vào P(x), ta được:
P(x)=x4+2x3-55x2+172x-156
<=>P(x)=(x-2)(x-3)(x2+7x+6)<=>P(x)=0
<=>[x-2=0 <=>x=2
[x-3=0 <=>x=3
[x2+7x+6=0 <=>x=-7+3√17 / 2 hoặc x=7-3√17 / 2
A= cos2 20o + cos2 30o + cos2 40o + sin2 40o +sin2 30o +sin220o
A = (cos2 20o +sin220o) + ( cos2 30o+sin2 30o) +(cos2 40o + sin2 40o)
A= 1+1+1=3