Tính nhanh:
a)A=1+2+3+....+49+50
b)B=2+4+6+8+.....+100
c)C=2+5+8+11+.....+98
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
C = x2 + 4x + y2 - 6y + 11 ( sửa -y2 => +y2 chứ để như kia không tìm được :)) )
= ( x2 + 4x + 4 ) + ( y2 - 6y + 9 ) - 2
= ( x + 2 )2 + ( y - 3 )2 - 2 ≥ -2 ∀ x, y
Đẳng thức xảy ra <=> x = -2 ; y = 3
=> MinC = -2 <=> x = -2 ; y = 3
Sửa đề C = - x2 - 4x - y2 - 6y + 11
<=> C = - ( x2 + 4x + 4 ) - ( y2 + 6y + 9 ) + 24
<=> C = \(-\left(x+2\right)^2-\left(y+3\right)^2+16\le16\)
Dấu "=" xảy ra <=> \(\orbr{\begin{cases}-\left(x+2\right)^2=0\\-\left(y+3\right)^2=0\end{cases}}\)<=>\(\orbr{\begin{cases}x=-2\\y=-3\end{cases}}\)
Vậy maxC = 24 <=> x = - 2 ; y = - 3
( x - 5 )( 2x - 2 ) + ( x - 5 ) = 0
<=> ( x - 5 )[ ( 2x - 2 ) + 1 ] = 0
<=> ( x - 5 )( 2x - 2 + 1 ) = 0
<=> ( x - 5 )( 2x - 1 ) = 0
<=> \(\orbr{\begin{cases}x-5=0\\2x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=5\\x=\frac{1}{2}\end{cases}}\)
Bài làm :
\(\left(x-5\right)\left(2x-2\right)+\left(x-5\right)=0\)
\(\left(x-5\right)\left(2x-2+1\right)=0\)
\(\left(x-5\right)\left(2x-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-5=0\\2x-1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=5\\2x=1\end{cases}}\Rightarrow\orbr{\begin{cases}x=5\\x=\frac{1}{2}\end{cases}}\)
Vậy x = 5 hoặc \(x=\frac{1}{2}\) .
Học tốt
Bài làm :
\(a,\left(7x-7\right)\left(x-3\right)=0\)
\(\Rightarrow\orbr{\begin{cases}7x-7=0\\x-3=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=1\\x=3\end{cases}}\)
Vậy x = 1 hoặc x = 3 .
\(b,108-18x=54\)
\(18x=108-54\)
\(18x=54\)
\(x=54:18\)
\(x=3\)
\(c,35.\left(x-10\right)=35\)
\(x-10=35:35\)
\(x-10=1\)
\(x=1+10\)
\(x=11\)
\(d,3x+5x=40\)
\(\left(3+5\right)x=40\)
\(8x=40\)
\(x=40:8\)
\(x=5\)
Học tốt
a. ( 7x - 7 ) ( x - 3 ) = 0
<=>\(\orbr{\begin{cases}7x-7=0\\x-3=0\end{cases}}\)<=>\(\orbr{\begin{cases}x=1\\x=3\end{cases}}\)
b. 108 - 18x = 54
=> 18x = 54
=> x = 3
c. 35 ( x - 10 ) = 35
=> x - 10 = 1
=> x = 11
d. 3x + 5x = 40
=> 8x = 40
=> x = 5
A = | 2x - 5 | + 7
| 2x - 5 | ≥ 0 ∀ x => | 2x - 5 | + 7 ≥ 7
Đẳng thức xảy ra <=> 2x - 5 = 0 => x = 5/2
=> MinA = 7 <=> x = 5/2
B = | x - 1 | + | 5 - x |
Áp dụng bất đẳng thức | a | + | b | ≥ | a + b | ta có :
| x - 1 | + | 5 - x | ≥ | x - 1 + 5 - x | = | 4 | = 4
Đẳng thức xảy ra khi ab ≥ 0
=> ( x - 1 )( 5 - x ) ≥ 0
1. \(\hept{\begin{cases}x-1\text{ }\ge0\\5-x\text{ }\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\text{ }\ge1\\-x\ge-5\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge1\\x\le5\end{cases}}\Leftrightarrow1\le x\le5\)
2. \(\hept{\begin{cases}x-1\text{ }\le0\\5-x\text{ }\le0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\text{ }\le1\\-x\le-5\end{cases}}\Leftrightarrow\hept{\begin{cases}x\le1\\x\ge5\end{cases}}\)( loại )
=> MinB = 4 <=> \(1\le x\le5\)
C mình chưa hiểu đề lắm :v