cho tam giác ABC vuông tại A, có AB=23.2005cm AC=29.2006cm. G là trọng tâm của tam giác M,N,P là hình chiếu của G xuông các cạnh BC,CA,AB. Tính diện tích tam giác MNP
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x+y+z=1\Rightarrow z=1-x-y\)Thay vào A ta được:
\(A=2xy+3y\left(1-x-y\right)+4\left(1-x-y\right)x\)
\(\Leftrightarrow2xy+3y-3xy-3y^2+4x-4x^2-4xy-A=0\)
\(\Leftrightarrow3y-3y^2+4x-4x^2-5xy-A=0\)
\(\Leftrightarrow-4x^2-\left(5y-4\right)x-3y^2+3y-A=0\)
\(\Leftrightarrow4x^2+\left(5y-4\right)x+3y^2-3y+A=0\)
\(\Delta=\left(5y-4\right)^2-16\left(3y^2-3y+A\right)\)
Để pt có nghiệm \(\Leftrightarrow\Delta\ge0\)
\(\Leftrightarrow\left(5y-4\right)^2-16\left(3y^2-3y+A\right)\ge0\)
\(\Leftrightarrow25y^2-40y+16-48y^2+48y-16A\ge0\)
\(\Leftrightarrow-23y^2+8y+16\ge16A\)
\(\Leftrightarrow16A\le-23\left(y^2-\frac{8}{23}y-\frac{12}{23}\right)=-23\left(y-\frac{4}{23}\right)^2+\frac{384}{23}\le\frac{384}{23}\)
\(\Rightarrow A\le\frac{24}{23}\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}2xy+3y\left(1-x-y\right)+4\left(1-x-y\right)x=\frac{24}{23}\\\left(y-\frac{4}{23}\right)^2=0\\x+y+z=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{9}{23}\\y=\frac{4}{23}\\z=\frac{10}{23}\end{cases}}\)
Vậy Max A = \(\frac{24}{23}\)\(\Leftrightarrow\hept{\begin{cases}x=\frac{9}{23}\\y=\frac{4}{23}\\z=\frac{10}{23}\end{cases}}\)
\(\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+....+\frac{3}{99.101}\)
\(=\frac{3}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\right)\)
\(=\frac{3}{2}\left(1-\frac{1}{101}\right)\)
\(=\frac{3}{2}.\frac{100}{101}\)
\(=\frac{150}{101}\)
Đặt A=\(\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+...+\frac{3}{99.101}\)
\(\frac{1}{2}A=\frac{1}{2}\left(\frac{3}{1.3}+\frac{3}{3.5}+...+\frac{3}{99.101}\right)\)
\(\frac{1}{2}A=\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{99.101}\)
\(\frac{1}{2}A=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\)
\(\frac{1}{2}A=1-\frac{1}{101}\)
\(\frac{1}{2}A=\frac{100}{101}\)
\(A=\frac{100}{101}:\frac{1}{2}\)
\(A=\frac{200}{101}\)
\(\left(5-2\sqrt{6}\right)^{\frac{x}{2}}+\left(5+2\sqrt{6}\right)^{\frac{x}{2}}=10\)
\(pt\Leftrightarrow\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^{2x}}+\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^{2x}}=10\)
\(\Leftrightarrow\left(\sqrt{3}-\sqrt{2}\right)^x+\left(\sqrt{3}+\sqrt{2}\right)^x=10\)
\(\Leftrightarrow\frac{1}{\left(\sqrt{3}+\sqrt{2}\right)^x}+\left(\sqrt{3}+\sqrt{2}\right)^x=10\)
\(\Leftrightarrow\frac{1}{t}+t=10\left(t=\left(\sqrt{3}+\sqrt{2}\right)^x\right)\)
\(\Leftrightarrow t^2-10t+1=0\)\(\Leftrightarrow t=5\pm2\sqrt{6}\)
\(\Rightarrow5\pm2\sqrt{6}=\left(\sqrt{3}+\sqrt{2}\right)^x\)
\(\Leftrightarrow\left(\sqrt{3}+\sqrt{2}\right)^{\pm2}=\left(\sqrt{3}+\sqrt{2}\right)^x\)
\(\Rightarrow x=\pm2\). Vậy...
câu này nghĩa là : anh 1 đi không trở lại để lại mình em với thằng bé
\(S_{MNP}=\frac{5}{8}S_{ABC}\)
Kết quả làm tròn tới 5 chữ sô thập phân nha