so sánh\(\dfrac{10^{2022}+1}{10^{2023}+1}\) và\(\dfrac{10^{2021}+1}{10^{2022}+1}\) nhanh giúp tôi
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{5}{x+1}=\dfrac{20}{-12}\\ \Rightarrow\dfrac{5}{x+1}=\dfrac{5}{-3}\\ \Rightarrow x+1=-3\\ \Rightarrow x=-4\)
\(\dfrac{5}{x+1}=\dfrac{20}{-12}\)
\(\Rightarrow\dfrac{5}{x+1}=\dfrac{5}{-3}\)
\(\Rightarrow x+1=-3\)
\(\Leftrightarrow x=-4\)
8,1 + (-3,7) + 1,9 + (-6,3)
=[(-3,7) + (-6,3)] + (8,1 + 1,9)
=10 - 10
=0
\(\text{8,1 + (-3,7) + 1,9 + (-6,3) }\)
\(\text{=[(-3,7) + (-6,3)] + (8,1 + 1,9) }\)
\(=\left(-10\right)+10\)
\(=0\)
\(A=\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{2005}}\)
\(3A=1+\dfrac{1}{3}+...+\dfrac{1}{3^{2004}}\)
\(3A-A=\left(1+\dfrac{1}{3}+...+\dfrac{1}{3^{2004}}\right)-\left(\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{2005}}\right)\)
\(2A=1-\dfrac{1}{3^{2005}}\)
\(A=\dfrac{1}{2}-\dfrac{1}{2\cdot3^{2005}}\)
\(A=\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{2005}}\)
=>\(3A=1+\dfrac{1}{3}+...+\dfrac{1}{3^{2004}}\)
=>\(3A-A=1+\dfrac{1}{3}+...+\dfrac{1}{3^{2004}}-\dfrac{1}{3}-\dfrac{1}{3^2}-...-\dfrac{1}{3^{2005}}\)
=>\(2A=1-\dfrac{1}{3^{2005}}=\dfrac{3^{2005}-1}{3^{2005}}\)
=>\(A=\dfrac{3^{2005}-1}{2\cdot3^{2005}}\)
\(-\dfrac{9}{25}\cdot17\dfrac{2}{3}-\left(-\dfrac{3}{5}\right)^2\cdot\dfrac{22}{3}\)
\(=-\dfrac{9}{25}\cdot\dfrac{53}{3}-\dfrac{9}{25}\cdot\dfrac{22}{3}\)
\(=-\dfrac{9}{25}\left(\dfrac{53}{3}+\dfrac{22}{3}\right)=-\dfrac{9}{25}\cdot25=-9\)
\(\dfrac{3}{7}\cdot\left(-\dfrac{2}{5}\right)\cdot2\dfrac{1}{2}\cdot20\cdot\dfrac{19}{72}\)
\(=\dfrac{3}{7}\cdot\left(-\dfrac{2}{5}\right)\cdot\dfrac{5}{2}\cdot20\cdot\dfrac{19}{72}\)
\(=\left(\dfrac{3}{7}\cdot\dfrac{19}{72}\right)\cdot\left(-\dfrac{2}{5}\cdot\dfrac{5}{2}\right)\cdot20\)
\(=\dfrac{19}{168}\cdot-1\cdot20\)
\(=\dfrac{19}{168}\cdot-20\)
\(=\dfrac{19\cdot-5}{42}\)
\(=\dfrac{-95}{42}\)
Đặt: \(A=\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2005}}\)
\(2A=2\cdot\left(\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2005}}\right)\)
\(2A=1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2004}}\)
\(2A-A=\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2004}}\right)-\left(\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2005}}\right)\)
\(A=1-\dfrac{1}{2^{2005}}\)
Bài 8:
Tổng số: 50 lần
a) Số lần xuất hiện mặt 4 chấm: 12 lần
Xác suất thực nghiệm ra được mặt 4 chấm là:
\(P\left(A\right)=\dfrac{12}{50}=\dfrac{6}{25}\)
b) Tổng số lần xuất hiện số chấm lẻ là: `8+3+10=21` lần
Xác suất thực nghiệm ra được mặt số chấm lẻ là:
\(P\left(B\right)=\dfrac{21}{50}\)
c) Tổng số lần xuất hiện số chấm nhỏ hơn 3 là: `8+7=15` lần
Xác suất thực nghiệm ra được số chấm nhỏ hơn 3 là:
\(P\left(C\right)=\dfrac{15}{50}=\dfrac{3}{10}\)
Đặt \(A=\dfrac{10^{2022}+1}{10^{2023}+1};B=\dfrac{10^{2021}+1}{10^{2022}+1}\)
\(10A=\dfrac{10^{2023}+10}{10^{2023}+1}=1+\dfrac{9}{10^{2023}+1}\)
\(10B=\dfrac{10^{2022}+10}{10^{2022}+1}=1+\dfrac{9}{10^{2022}+1}\)
Vì \(10^{2023}+1>10^{2022}+1\)
nên \(\dfrac{9}{10^{2023}+1}< \dfrac{9}{10^{2022}+1}\)
=>\(\dfrac{9}{10^{2023}+1}+1< \dfrac{9}{10^{2022}+1}+1\)
=>10A<10B
=>A<B