Vẽ tam giác ABC nhọn. Vẽ đường tròn đường kính BC cắt AB,AC theo thứ tự tại D,E. Gọi H là giao điểm của BE và CD. C/M AH vuông góc BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đk : x >= 0, x khác 4
\(=\dfrac{x+2\sqrt{x}-\left(x-\sqrt{x}-2\right)-\sqrt{x}-4}{x-4}\)
\(=\dfrac{2\sqrt{x}-2}{x-4}=\dfrac{2\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
Ta có:
\(\frac{a\left(b+c\right)}{b^2+bc+c^2}=\frac{a\left(b+c\right)\left(ab+bc+ca\right)}{\left(b^2+bc+c^2\right)\left(ab+bc+ca\right)}\)
\(\ge\frac{4a\left(b+c\right)\left(ab+bc+ca\right)}{\left(b^2+bc+c^2+ab+bc+ca\right)^2}=\frac{4a\left(ab+bc+ca\right)}{\left(b+c\right)\left(a+b+c\right)^2}\)
Tương tự ta được:
\(\frac{a\left(b+c\right)}{b^2+bc+c^2}+\frac{b\left(c+a\right)}{c^2+ca+a^2}+\frac{c\left(a+b\right)}{a^2+ab+b^2}\)
\(\ge\frac{4a\left(ab+bc+ca\right)}{\left(b+c\right)\left(a+b+c\right)^2}+\frac{4b\left(ab+bc+ca\right)}{\left(c+a\right)\left(a+b+c\right)^2}+\frac{4c\left(ab+bc+ca\right)}{\left(a+b\right)\left(a+b+c\right)^2}\)
Vậy ta cần chứng minh:
\(\frac{4a\left(ab+bc+ca\right)}{\left(b+c\right)\left(a+b+c\right)^2}+\frac{4b\left(ab+bc+ca\right)}{\left(c+a\right)\left(a+b+c\right)^2}+\frac{4c\left(ab+bc+ca\right)}{\left(a+b\right)\left(a+b+c\right)^2}\ge2\)
Ta viết lại bất đẳng thức trên thành:
\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)}\)
Đánh giá trên đúng theo bất đẳng thức Bunhiacopxki dạng phân thức. Vậy bất đẳng thức đã được chứng minh.
\(y+3=0\)
\(y=-3\)
Để PT vô nghiệm \(\left(m-1\right)x+2=-3\)
\(\left(m-1\right)x=-5\)
Để PT vô nghiệm thì : \(m-1=0\)
\(\Rightarrow m=1\)
ĐKXĐ : x \(\ge0;x\ne1\)
Khi đó B = \(\frac{2\left(\sqrt{x}-1\right)}{x-1}+\frac{4\left(\sqrt{x}+1\right)}{x-1}-\frac{7\sqrt{x}}{x-1}=\frac{2-\sqrt{x}}{x-1}\)
Khi đó \(M=A.B=\left(x-3\sqrt{x}+2\right).\frac{2-\sqrt{x}}{x-1}=\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right).\frac{2-\sqrt{x}}{x-1}\)
\(=\frac{-\left(\sqrt{x}-2\right)^2}{\sqrt{x}+1}\)
Để \(M\ge0\Leftrightarrow\frac{-\left(\sqrt{x}-2\right)^2}{\sqrt{x}+1}\ge0\Leftrightarrow-\left(\sqrt{x}-2\right)^2\ge0\)(Vì \(\sqrt{x}+1\ge1>0\))
\(\Leftrightarrow\sqrt{x}-2=0\Leftrightarrow x=4\)
\(\Delta'=\left(m+1\right)^2-\left(-2m-3\right)=m^2+2m+1+2m+3\)
\(=m^2+4m+4=\left(m+2\right)^2\ge0\)
Vậy pt luôn có 2 nghiệm x1;x2
Xét (O) có ^BDC = ^BEC = 900 ( góc nt chắng nửa đường tròn )
Xét tam giác ABC có CD là đường cao
BE là đường cao
CD giao BE = H => AH là đường cao thứ 3
=> AH vuông BC
Ta có
\(\widehat{BDC}=90^o\)(góc nội tiếp chắn nửa đường tròn) \(\Rightarrow CD\perp AB\)
\(\widehat{BEC}=90^o\)(góc nội tiếp chắn nửa đường tròn) \(\Rightarrow BE\perp AC\)
=> H là trực tâm của tg ABC => AH là đường cao của tg ABC\(\Rightarrow AH\perp BC\)