Phân tích đa thức thành nhân tử
1/ x7+x5+x4+x3+x2+1
2/ x8+14x4+
3/ 2x5-3x4+6x3-8x2+3
Mình đang cần gáp mong mấy bạn giúp mình :((((
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{5}{6}x+\frac{1}{2}-\frac{1}{3}x=0.75x-\frac{7}{8}\)
\(\frac{5}{6}x-\frac{1}{3}x-\frac{3}{4}x=-\frac{7}{8}-\frac{1}{2}\) ( 3/4x là 0,75x nha)
\(x\times\left(\frac{10}{12}-\frac{4}{12}-\frac{9}{12}\right)=-\frac{7}{8}-\frac{4}{8}\)
\(x\times\left(-\frac{3}{12}\right)=-\frac{11}{8}\Rightarrow x=\frac{11}{8}\div\left(-\frac{3}{12}\right)=-\frac{11}{2}\)
\(\frac{2x}{7-5}:\left(-8\right)=0,75\)
=> \(\frac{2x}{2}=0,75.\left(-8\right)\)
=> \(x=-6\)
Vậy x=-6
Sửa đề:
\(C=x^2-4xy+5y^2-10y+6\)
\(C=\left(x^2-4xy+4y^2\right)+\left(y^2-10y+25\right)-19\)
\(C=\left(x-2y\right)^2+\left(y-5\right)^2-19\ge-19\left(\forall x,y\right)\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}\left(x-2y\right)^2=0\\\left(y-5\right)^2=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=2y\\y=5\end{cases}}\Rightarrow\hept{\begin{cases}x=10\\y=5\end{cases}}\)
Vậy \(Min_C=-19\Leftrightarrow\hept{\begin{cases}x=10\\y=5\end{cases}}\)
\(D=x^2-2xy+2y^2-2x-10y+20\)
\(D=\left(x-y\right)^2-2\left(x-y\right)+1+\left(y^2-12y+36\right)-17\)
\(D=\left(x-y-1\right)^2+\left(y-6\right)^2-17\ge-17\left(\forall x,y\right)\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}\left(x-y-1\right)^2=0\\\left(y-6\right)^2=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=y+1\\y=6\end{cases}}\Rightarrow\hept{\begin{cases}x=7\\y=6\end{cases}}\)
Vậy \(Min_D=-17\Leftrightarrow\hept{\begin{cases}x=7\\y=6\end{cases}}\)
đề câu 2 thiếu kìa