Cho \(\Delta ABC\) vuông cân tại A. Trên AC lấy điểm M sao cho MC : MA = 1:3. Kẻ đường thẳng vuông góc với AC tại C cắt BM tại K .
a, C/minh: \(\frac{1}{AB^2}=\frac{1}{BM^2}+\frac{1}{BK^2}\)
b, Biết BM = 12cm. Tính các cạnh của \(\Delta MCK\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(268.16+244.48\)
\(=268.16+244.\left(16+32\right)\)
\(=268.16+244.16+244.32\)
\(=268.16+244.16+244.\left(16+16\right)\)
\(=268.16+244.16+244.16+244.16\)
\(=\left(268+244+244+244\right).16\)
\(=1000.16=16000\)
~ Hok tốt ~
Gọi AB là cạnh bên kề với góc 30độ, h là độ dài đường cao. (Tôi 0 biết vẽ hình trong YHĐ) Khi đó h = AB/2.
a = (căn 3)AB/2 + b + AB/2.
=> AB = 2(a - b)/(căn 3 + 1) => h = (a - b)/(căn 3 + 1)
Diện tích = (a + b)h/2 = (a^2 - b^2)/2(căn 3 + 1)
Vẽ hình thì dễ nhìn thấy hơn. Có thể áp dụng các hệ thức lượng trong chương I hình học 9.
Bài này làm hẳn ra dài lắm -,- làm tắt xíu nha
Hình chữ nhật EHFA => EH = AF ; EA = HF (thay vô chỗ nào trong bài thì tự nhìn nhé)
A B C H E F
a,Theo hệ thức lượng trong tam giác vuông ta có
\(\frac{c^3}{b^3}=\frac{AB^3}{AC^3}=\frac{AB^2}{AC^2}.\frac{AB}{AC}=\frac{BH.BC}{CH.BC}.\frac{AB}{AC}=\frac{BH.AB}{CH.AC}=\frac{BH.\frac{BH.HA}{HE}}{CH.\frac{AH.HC}{HF}}\)
\(=\frac{BH^2.HA.HF}{CH^2.HA.HE}=\frac{BH^2.HF}{CH^2.HE}=\frac{BE.BA.HF}{CF.CA.HE}\)
\(=\frac{m}{n}.\frac{BA.HF}{CA.HE}=\frac{m}{n}.\frac{BA.AE}{CA.AF}=\frac{m}{n}.\frac{AH^2}{AH^2}=\frac{m}{n}\left(dpcm\right)\)
\(b,m^2+n^2+3h^2=BE^2+CF^2+3AH^2\)
\(=BE^2+CF^2+AH^2+AH^2+AH^2\)
\(=BE^2+CF^2+AH^2+\left(AB^2-BH^2\right)+\left(AC^2-CH^2\right)\left(Py-ta-go\right)\)
\(=\left(AB^2+AC^2\right)+\left(BE^2+CF^2+AH^2-BH^2-CH^2\right)\)
\(=BC^2+\left[BE^2+CF^2+AH^2-\left(BE^2+EH^2\right)-\left(HF^2+FC^2\right)\right]\)
\(=a^2+\left(AH^2-EH^2-HF^2\right)\)
\(=a^2+\left(AH^2-EH^2-EA^2\right)\)
Theo Pytago \(AH^2=EH^2+EA^2\)nên \(m^2+n^2+3h^2=a^2+\left(AH^2-EH^2-EA^2\right)=a^2\)
\(c,\)chưa ra :P