K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Nhanh nhanh 5 tk

20 tháng 6 2019

\(268.16+244.48\)

\(=268.16+244.\left(16+32\right)\)

\(=268.16+244.16+244.32\)

\(=268.16+244.16+244.\left(16+16\right)\)

\(=268.16+244.16+244.16+244.16\)

\(=\left(268+244+244+244\right).16\)

\(=1000.16=16000\)

~ Hok tốt ~

21 tháng 6 2019

C=(1253.75-1753:5):20192020

C=[(53)3.75-510.75:5)]:20192020

C=[(59.75-510:5.75)]:20192020

C=[(59.75-59.75)]:20192020

C= 0÷20192020

C=0

20 tháng 6 2019

Gọi AB là cạnh bên kề với góc 30độ, h là độ dài đường cao. (Tôi 0 biết vẽ hình trong YHĐ) Khi đó h = AB/2. 
a = (căn 3)AB/2 + b + AB/2. 
=> AB = 2(a - b)/(căn 3 + 1) => h = (a - b)/(căn 3 + 1) 
Diện tích = (a + b)h/2 = (a^2 - b^2)/2(căn 3 + 1) 
Vẽ hình thì dễ nhìn thấy hơn. Có thể áp dụng các hệ thức lượng trong chương I hình học 9.

20 tháng 6 2019

Mình thấy cách bạn Doraemon đúng rồi 

Mình cũng làm theo cách của bạn ấy nhưng ko coppy đâu mong bạn hiểu

~Hok tốt~

20 tháng 6 2019

Bài này làm hẳn ra dài lắm -,- làm tắt xíu nha

Hình chữ nhật EHFA => EH = AF ; EA = HF (thay vô chỗ nào trong bài thì tự nhìn nhé)

A B C H E F

a,Theo hệ thức lượng trong tam giác vuông ta có

\(\frac{c^3}{b^3}=\frac{AB^3}{AC^3}=\frac{AB^2}{AC^2}.\frac{AB}{AC}=\frac{BH.BC}{CH.BC}.\frac{AB}{AC}=\frac{BH.AB}{CH.AC}=\frac{BH.\frac{BH.HA}{HE}}{CH.\frac{AH.HC}{HF}}\) 

                         \(=\frac{BH^2.HA.HF}{CH^2.HA.HE}=\frac{BH^2.HF}{CH^2.HE}=\frac{BE.BA.HF}{CF.CA.HE}\)

                          \(=\frac{m}{n}.\frac{BA.HF}{CA.HE}=\frac{m}{n}.\frac{BA.AE}{CA.AF}=\frac{m}{n}.\frac{AH^2}{AH^2}=\frac{m}{n}\left(dpcm\right)\)

\(b,m^2+n^2+3h^2=BE^2+CF^2+3AH^2\)

                                    \(=BE^2+CF^2+AH^2+AH^2+AH^2\)

                                    \(=BE^2+CF^2+AH^2+\left(AB^2-BH^2\right)+\left(AC^2-CH^2\right)\left(Py-ta-go\right)\)

                                      \(=\left(AB^2+AC^2\right)+\left(BE^2+CF^2+AH^2-BH^2-CH^2\right)\)

                                     \(=BC^2+\left[BE^2+CF^2+AH^2-\left(BE^2+EH^2\right)-\left(HF^2+FC^2\right)\right]\)

                                     \(=a^2+\left(AH^2-EH^2-HF^2\right)\)

                                    \(=a^2+\left(AH^2-EH^2-EA^2\right)\)

Theo Pytago \(AH^2=EH^2+EA^2\)nên \(m^2+n^2+3h^2=a^2+\left(AH^2-EH^2-EA^2\right)=a^2\)

\(c,\)chưa ra :P