Cho hình vuông ABCD,M là điểm thuộc AB,N là điểm thuộc BC.Trên tia đối của tiaAB lấy E biết AM=Bn=AE=1/4AB.Gọi F là giao điềm của MC với DN.cm
a)DN vuông góc CM
b)EF=DM
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi số vỏ lon bia lớp 8/1 nộp là a ( vỏ ) ( a\(\in\)N*, a< 720 )
=> số vỏ lớp 8 /2 phải nộp là 720 -a ( vỏ)
TĐB ta có (a - 40) / (720- a + 40) = 4/5
=> 5a - 200 = 3040 - 4a
a = 360
số lon của lớp 8/1 là 360 lon. số lon lớp 8/2 là 720 -360 = 360 lon
\(x\left(x+1\right)\left(x^2+x+1\right)=42\)
\(\left(x^2+x\right)\left(x^2+x+1\right)=42\)
Đặt \(p=x^2+x\)khi đó :
\(p\cdot\left(p+1\right)=42\)
Dễ thấy p và p+1 là 2 số liên tiếp, mặt khác : 42 = 6 . 7
\(\Rightarrow p=6\)
Hay \(x^2+x=6\)
\(x\left(x+1\right)=6\)
Dễ thấy x và x+1 là 2 số liên tiếp, mặt khác : 6 = 2 . 3
\(\Rightarrow x=2\)
Vậy x = 2
\(x\left(x+1\right)\left(x^2+x+1\right)=42.\)
\(\Leftrightarrow\left(x^2+x\right)\left(x^2+x+1\right)-42=0\)(1)
Đặt: \(a=x^2+x\)
Khi đó phương trình (1) trở thành:
\(a\left(a+1\right)-42=0\)
\(\Leftrightarrow a^2+4-42=0\)
\(\Leftrightarrow a^2-6a+7a-42=0\)
\(\Leftrightarrow a\left(a-6\right)+7\left(a-6\right)=0\)
\(\Leftrightarrow\left(a-6\right)\left(a+7\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a-6=0\\a+7=0\end{cases}}\)
Theo cách đặt, ta được:
\(\orbr{\begin{cases}x^2+x-6=0\left(2\right)\\x^2+x+7=0\left(3\right)\end{cases}}\)
Phương trình (2) \(\Leftrightarrow\left(x-2\right)\left(x+3\right)=0\Leftrightarrow\orbr{\begin{cases}x=2\\x=-3\end{cases}}\)
Phương trình (3) \(\Leftrightarrow x^2+x+\frac{1}{4}+\frac{27}{4}=0\Leftrightarrow\left(x+\frac{1}{2}\right)^2+\frac{27}{7}=0\)
\(\Leftrightarrow\left(x+\frac{1}{2}\right)^2=-\frac{27}{4}\)(vô lí)
Vậy: Nghiệm của phương trình là: \(S=\left\{-3;2\right\}\)
mk lm phàn 2 nha.Bạn có thể sử dụng miền gtrị hàm để tìm GTLN(phàn này chỉ làm nháp thôi)
Gọi m là 1 giá trị của bt \(\frac{x^2+x+1}{x^2-x+1}\)
Ta có m= \(\frac{x^2+x+1}{x^2-x+1}\)<=> m(x2-x+1)=x2+x+1
<=> mx2-mx+m-x2-x-1=0
<=>(m-1)x2-(m+1)x+m+1=0(1) (chú ý đối vs pt bậc:ax2+bx+c=0.pt có \(\Delta=b^2-4ac\)Nếu \(\Delta\ge0\Rightarrow\)pt có 2 nghiệm.Nếu \(\Delta< 0\)pt vô nghiệm)
Nếu m=0......(th này ko cần xét)
Nếu m \(\ne0\)pt (1) có nghiệm khi \(\Delta=b^2-4ac\ge0\)
<=> (m+1)2-4(x-1)2\(\ge0\)
<=>m2+2m+1-4(m2-2m+1)\(\ge0\)
<=>-3m2+10m-3\(\ge0\)
<=>3m2-10m+3\(\le0\)(phân tích đa thức thành ntử
....<=> (m-3)(3m-1)\(\le0\)<=>\(\frac{1}{3}\le m\le3\)
=>GTLN là 3
bài làm
Dặt A= \(\frac{x^2+x+1}{x^2-x+1}=\frac{3x^2-3x+3-2x^2+4x-2}{x^2-x+1}\)
\(=\frac{3\left(x^2-x+1\right)-2\left(x^2-2x+1\right)}{x^2-x+1}=3-\frac{\left(x-1^2\right)}{x^2+x+1}\)
do \(\frac{\left(x-1\right)^2}{x^2-x+1}\ge0\Rightarrow3-\frac{\left(x-1\right)^2}{x^2-x+1}\le3\)
=>MaxA=3 <=> x-1=0
<=> x=1
Vậy.......
tk mk nha
có gì ko hiểu bn nhắn tin bảo mk kèm theo link này nha
https://olm.vn/hoi-dap/detail/205014689694.html
Do AB//CD
=) \(\widehat{A}\)+\(\widehat{D}\)=1800 (2 góc vị trí trong cùng phía )
1000 + \(\widehat{D}\)=1800
\(\widehat{D}\)=1800 - 1000
\(\widehat{D}\)= 800
Xét tứ giác ABCD có :
\(\widehat{A}\)+\(\widehat{B}\)+\(\widehat{C}\)+\(\widehat{D}\)=3600
1000+1200+\(\widehat{C}\)+800 =3600
3000 +\(\widehat{C}\)=3600
\(\widehat{C}\)= 600
2) Từ B kẻ BE \(\perp\)CD
Xét tam giác ADH (\(\widehat{AH\text{D}}\)=900) và BCE (\(\widehat{BEC}\)=900) có:
AD=BC (tính chất hình thang cân)
\(\widehat{A\text{D}H}\)=\(\widehat{BCE}\)(tính chất hình thang cân)
=) Tam giác ADH = Tam giác BCE (cạch huyền - góc nhọn )
=) DH= CE (2 cạch tương ứng )
Do AB//CD Mà AH\(\perp\)CD=) AH\(\perp\)AB
Xét tứ giác ABEH có
\(\widehat{BAH}\)= \(\widehat{AHE}\) = \(\widehat{BEH}\) = 900
=) Tứ giác ABEH lá hình chữ nhật =) AB=HE=10 cm
Ta có : DH+HE+EC= 20 cm
2DH+10=20
2DH =10
DH = 5 (cm)
xét tam giác vuông AHD
Áp dụng định lí Pitago ta có
AD2=AH2+HD2
AD2=122+52
AD2= 144+25=169
AD=13 cm (đpcm)