K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 1 2019

gọi số vỏ lon bia lớp 8/1 nộp là a ( vỏ ) ( a\(\in\)N*, a< 720 ) 

=> số vỏ lớp 8 /2 phải nộp là 720 -a ( vỏ)

TĐB ta có (a - 40) / (720- a + 40) =  4/5

 => 5a - 200 = 3040 - 4a 

a = 360

số lon của lớp 8/1 là 360 lon. số lon lớp 8/2 là 720 -360 = 360 lon 

10 tháng 1 2019

\(x\left(x+1\right)\left(x^2+x+1\right)=42\)

\(\left(x^2+x\right)\left(x^2+x+1\right)=42\)

Đặt \(p=x^2+x\)khi đó :

\(p\cdot\left(p+1\right)=42\)

Dễ thấy p và p+1 là 2 số liên tiếp, mặt khác : 42 = 6 . 7

\(\Rightarrow p=6\)

Hay \(x^2+x=6\)

\(x\left(x+1\right)=6\)

Dễ thấy x và x+1 là 2 số liên tiếp, mặt khác : 6 = 2 . 3

\(\Rightarrow x=2\)

Vậy x = 2

10 tháng 1 2019

\(x\left(x+1\right)\left(x^2+x+1\right)=42.\)

\(\Leftrightarrow\left(x^2+x\right)\left(x^2+x+1\right)-42=0\)(1)

Đặt: \(a=x^2+x\)

Khi đó phương trình (1) trở thành:

\(a\left(a+1\right)-42=0\)

\(\Leftrightarrow a^2+4-42=0\)

\(\Leftrightarrow a^2-6a+7a-42=0\)

\(\Leftrightarrow a\left(a-6\right)+7\left(a-6\right)=0\)

\(\Leftrightarrow\left(a-6\right)\left(a+7\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}a-6=0\\a+7=0\end{cases}}\)

Theo cách đặt, ta được:

\(\orbr{\begin{cases}x^2+x-6=0\left(2\right)\\x^2+x+7=0\left(3\right)\end{cases}}\)

Phương trình (2) \(\Leftrightarrow\left(x-2\right)\left(x+3\right)=0\Leftrightarrow\orbr{\begin{cases}x=2\\x=-3\end{cases}}\)

Phương trình (3) \(\Leftrightarrow x^2+x+\frac{1}{4}+\frac{27}{4}=0\Leftrightarrow\left(x+\frac{1}{2}\right)^2+\frac{27}{7}=0\)

\(\Leftrightarrow\left(x+\frac{1}{2}\right)^2=-\frac{27}{4}\)(vô lí)

Vậy: Nghiệm của phương trình là: \(S=\left\{-3;2\right\}\)

10 tháng 1 2019

mk lm phàn 2 nha.Bạn có thể sử dụng miền gtrị hàm để tìm GTLN(phàn này chỉ làm nháp thôi)

Gọi m là 1 giá trị của bt \(\frac{x^2+x+1}{x^2-x+1}\)

Ta có m= \(\frac{x^2+x+1}{x^2-x+1}\)<=> m(x2-x+1)=x2+x+1

<=> mx2-mx+m-x2-x-1=0

<=>(m-1)x2-(m+1)x+m+1=0(1)  (chú ý đối vs pt bậc:ax2+bx+c=0.pt có \(\Delta=b^2-4ac\)Nếu \(\Delta\ge0\Rightarrow\)pt có 2 nghiệm.Nếu \(\Delta< 0\)pt vô nghiệm)

Nếu m=0......(th này ko cần xét) 

Nếu m \(\ne0\)pt (1) có nghiệm khi \(\Delta=b^2-4ac\ge0\)

<=> (m+1)2-4(x-1)2\(\ge0\)

<=>m2+2m+1-4(m2-2m+1)\(\ge0\)

<=>-3m2+10m-3\(\ge0\)

<=>3m2-10m+3\(\le0\)(phân tích đa thức thành ntử

....<=> (m-3)(3m-1)\(\le0\)<=>\(\frac{1}{3}\le m\le3\)

=>GTLN là 3

bài làm

Dặt A= \(\frac{x^2+x+1}{x^2-x+1}=\frac{3x^2-3x+3-2x^2+4x-2}{x^2-x+1}\)

        \(=\frac{3\left(x^2-x+1\right)-2\left(x^2-2x+1\right)}{x^2-x+1}=3-\frac{\left(x-1^2\right)}{x^2+x+1}\)

do \(\frac{\left(x-1\right)^2}{x^2-x+1}\ge0\Rightarrow3-\frac{\left(x-1\right)^2}{x^2-x+1}\le3\)

=>MaxA=3 <=> x-1=0

                  <=> x=1

Vậy.......

tk mk nha

10 tháng 1 2019

có gì ko hiểu bn nhắn tin bảo mk kèm theo link này nha

https://olm.vn/hoi-dap/detail/205014689694.html

10 tháng 1 2019

Do AB//CD

=) \(\widehat{A}\)+\(\widehat{D}\)=1800 (2 góc vị trí trong cùng phía )

  1000 + \(\widehat{D}\)=1800

             \(\widehat{D}\)=1800 - 1000

           \(\widehat{D}\)= 800

Xét tứ giác ABCD có :

\(\widehat{A}\)+\(\widehat{B}\)+\(\widehat{C}\)+\(\widehat{D}\)=3600

1000+1200+\(\widehat{C}\)+800 =3600

 3000 +\(\widehat{C}\)=3600

         \(\widehat{C}\)= 600

2) Từ B kẻ BE \(\perp\)CD

Xét tam giác ADH (\(\widehat{AH\text{D}}\)=900) và BCE (\(\widehat{BEC}\)=900) có:

           AD=BC (tính chất hình thang cân)

          \(\widehat{A\text{D}H}\)=\(\widehat{BCE}\)(tính chất hình thang cân)

=) Tam giác ADH = Tam giác BCE (cạch huyền - góc nhọn )

=)  DH= CE (2 cạch tương ứng )

Do AB//CD Mà AH\(\perp\)CD=) AH\(\perp\)AB

Xét tứ giác ABEH có

\(\widehat{BAH}\)\(\widehat{AHE}\) = \(\widehat{BEH}\) = 900

=) Tứ giác ABEH lá hình chữ nhật =) AB=HE=10 cm

Ta có : DH+HE+EC= 20 cm

         2DH+10=20

         2DH =10

           DH = 5 (cm)

xét tam giác vuông AHD 

Áp dụng định lí Pitago ta có

AD2=AH2+HD2

AD2=122+52

AD2= 144+25=169

AD=13 cm (đpcm)