Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
C = -1 + 3 - 32 + ... + 32009 - 32010
=> 3C = - 3 + 32 - 33 + ... + 32010 - 32011
=> 3C + C = ( - 3 + 32 - 33 + ... + 32010 - 32011 ) - ( -1 + 3 - 32 + ... + 32009 - 32010 )
=> 4C = -32010 - 1
=> \(C=\frac{-3^{2010} - 1}{4}\)
\(C=\left(3+3^3+3^5+...+3^{2019}\right)-\left(1+3^2+3^4+...+3^{2020}\right)\)
\(C=\left(1+3+3^2+3^3+...+3^{2020}\right)-2\left(1+3^2+3^4+...+3^{2020}\right)\)
\(A=1+3+3^2+...+3^{2020}\)
\(3A=3+3^2+3^3+...+3^{2021}\)
\(2A=3A-A=3^{2021}-1\Rightarrow A=\frac{3^{2021}-1}{2}\)
\(B=1+3^2+3^4+...+3^{2020}\)
\(3^2B=9B=3^2+3^4+3^6+...+3^{2022}\)
\(8B=9B-B=3^{2022}-1\Rightarrow B=\frac{3^{2022}-1}{8}\)
\(\Rightarrow C=A-2B=\frac{3^{2021}-1}{2}-\frac{2\left(3^{2022}-1\right)}{8}=\frac{2.3^{2021}-3^{2022}+1}{4}\)
\(B=1+4+4^2+...+4^{2020}\)
\(4B=4+4^2+4^3+...+4^{2020}+4^{2021}\)
\(4B-B=\left(4+4^2+4^3+...+4^{2020}+4^{2021}\right)-\left(1+4+4^2+...+4^{2020}\right)\)
\(3B=4^{2021}-1\)
\(B=\frac{4^{2021}-1}{3}\).
B = ( 45 . 10 . 56 + 255 . 28 ) : ( 28 . 54 + 57 . 25 )
=> B = [ ( 22 )5 . 2 . 5 . 56 + ( 52 )5 . 28 ] : [ 25 . 54 . ( 23 + 53 )]
=> B = ( 210 . 2 . 57 + 510 . 28 ) : [ 25 . 54 . ( 8 + 125 )]
=> B = [ 28 . 57 . ( 23 + 53 )] : ( 25 . 54 . 133 )
=> B = 28 . 57 . 133 : 25 . 54 . 133
=> B = 23 . 53 = ( 2 . 5 )3 = 103 = 1000
= \(\frac{4^5.10.5^6+25^5.2^8}{2^8.5^4+5^7.2^5}\)
= \(\frac{\left(2^2\right)^5.2.5.5^6+\left(5^2\right)^5.2^8}{2^5.5^4\left(2^3+5^3\right)}\)
= \(\frac{2^{11}.5^7+5^{10}.2^8}{2^55^4\left(2^3+5^3\right)}\)
= \(\frac{2^8.5^7\left(2^3+5^3\right)}{2^55^4\left(2^3+5^3\right)}\)
= 23.53
= 103
\(4.5^5-32:2^4\)
\(=4.3125-32:16\)
\(=12500-2\)
\(=12498\)
b) 2x = 8 x 4
2x = 32
x = 32 : 2
x = 16
c) 4x = 16
x = 16 : 4
x = 4
a) x2.x3:7=224
=>x5 :7=224
=>x5 =32
=>x5 =25 => x=2
b)x3 :xx +7=8
=>x3-x =1
=>x3-x =13-x
=> x=1
c) xn =1
=> xn=1n
=> x=1
k cho minh nhee:3
\(S=2+2^3+2^5+....+2^{51}.\)
\(2^2S=2^3+2^5+2^7+....+2^{53}\)
\(4S-S=\left(2^3+2^5+2^7+....+2^{53}\right)-\left(2+2^3+2^5+.....+2^{51}\right)\)
\(3S=2^{53}-2\)
\(S=\frac{2^{53}-2}{3}\)