Cho tam giác abc=tam giác def,biết góc b-c=10độ,góc e+f=120độ .tính số đo mỗi góc của 2 tam giác
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo bài ra ta có : \(\frac{x}{5}-\frac{1}{y}=\frac{1}{2}\)
\(\Rightarrow\frac{xy-5}{5y}=\frac{1}{2}\)
\(\Rightarrow2\left(xy-5\right)=5y\)
\(\Rightarrow2xy-10-5y=0\)
\(\Rightarrow y\left(2x-5\right)=10\)
mà 10 = 2.5 = (-2).(-5) = 1.10 = (-1).(-10)
Lập bảng xét 8 trường hợp :
x | 10 | 1 | 2 | 5 | -2 | -5 | -1 | -10 |
2x - 5 | 7,5 | 3(tm) | 3,5 | 5(tm) | -1,5 | 0(tm) | 2(tm) | -2,5 |
y | 1 | 10 | 5 | 2 | -5 | -2 | -10 | -1 |
Vậy các cặp (x;y) thỏa mãn bài toán là : (3;10) ; (5;2) ; (0;-2) ; (2;-10)
1 )
Xét \(\Delta AMB\)và \(\Delta CMN\)có :
BM = NM ( gt )
\(\widehat{AMB}=\widehat{CMN}\) ( đối đỉnh )
CM = AM ( gt)
=> \(\Delta AMB=\Delta CMN\left(c.g.c\right)\)
=> CN = AB
và \(\widehat{MCN}=90^o\) ( hay \(\widehat{ACN}=90^o\) )
=> \(CN\perp AC\)
2 ) Dễ cm \(\Delta AMN=\Delta CMB\left(c.g.c\right)\)
=> AN = BC
và \(\widehat{BCM}=\widehat{MAN}\) mà 2 góc này ở vị trí so le trong => BC//AN
3)
Dễ cm \(\Delta BAN=\Delta NCB\left(c.c.c\right)\)
4 )
Dễ cm \(\Delta BAC=\Delta NCA\left(c.c.c\right)\)
tham khảo https://olm.vn/hoi-dap/detail/211444161844.html
bn cũng có thể tham khảo ở https://olm.vn/hoi-dap/detail/3907025144.html
a ) Xét \(\Delta\)ADE và \(\Delta\)CFE có :
\(\Rightarrow\)\(\Delta\)ADE = \(\Delta\)CFE ( c - g - c )
\(\Rightarrow\)AD = CF ( 2 cạnh tương ứng )
Mà BD = AD ( D là trung điểm AB )
\(\Rightarrow\)BD = CF
b ) Ta có : \(\Delta\)ADE = \(\Delta\)CFE ( cmt )
\(\Rightarrow\)Â = Góc FCE ( 2 góc tương ứng )
Mà 2 góc này ở vị trí so le trong nên AB // CF
Hay BD // CF
\(\Rightarrow\)◇BDFC là hình thang
Mà ta có : BD = CF
\(\Rightarrow\)DF = BC
\(\Rightarrow\)2DE = BC ( vì E là trung điểm DF )
tự vẽ
a)xét tam giác ABD và tam giác MBD có:
BA=BM (gt)
\(\widehat{ABD}=\widehat{DBM}\)(gt)
BD chung
=> \(\Delta ABD=\Delta MBD\)(c.g.c)
=>\(\widehat{A}=\widehat{DMB}=90^o\)(góc tương ứng)
vậy DM vuông góc với BC
b)
xét tam giác DCM vuông tại M có
\(\widehat{MDC}+\widehat{MCD}=90^o\) (2 góc phụ nhau) (1)
xét tam giác ABC vuông tại A có
\(\widehat{ABC}+\widehat{BCA}=90^o\)(2 góc phụ nhau) (2)
từ (1) và (2) => \(\widehat{MDC}=\widehat{ABC}\)(ĐPCM)
Giúp mình nhanh nha
ta có góc b và e là 2 góc tương ứng góc c và f là 2 góc tương ứng suy ra chịu..........