cho tam giác nhọn ABc có trực tâm H, trọng tâm I. Giao điểm 3 đường trung trực là O, trung điểm của BC là M. Tính giá trị biểu thức \(\sqrt{\frac{IO^2+OM^2}{IH^2+HA^2}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2x^2-x-1=0\)
\(2x^2-2x+x-1=0\)
\(2x\left(x-1\right)+\left(x-1\right)=0\)
\(\left(2x+1\right)\left(x-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2x+1=0\\x-1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{-1}{2}\\x=1\end{cases}}\)
Mk ms lớp 8, sai thì thôi nhé !!!
2x2-x-1=0
<=> 2x2-2x+x-1=0
<=> 2x(x-1)+(x-1)=0
<=> (x-1)(2x+1)=0
<=> x-1=0<=>x=1
hoặc 2x+1=0<=> x=-1/2
Vậy phương trình trên có tập nghiệm S={1,-1/2}
\(x=\sqrt[3]{30+14\sqrt{2}}-\sqrt[3]{20+14\sqrt{2}}\)
\(=\sqrt[3]{\left[2^3+3.2^2.\sqrt{2}+3.2+\sqrt{2^2}+\left(\sqrt{2}\right)^3\right]}+\sqrt[3]{\left[2^3-3.2.\sqrt{2}+3.2.\sqrt{2^2}-\left(\sqrt{2}\right)^3\right]}\)
\(=\sqrt[3]{\left(2+\sqrt{2}\right)^3}+\sqrt[3]{\left(2-\sqrt{2}\right)^3}\)
\(=2+\sqrt{2}+2-\sqrt{2}\)
\(=4\)
Vậy x = 4.
Tham khảo:Cho tam giác ABC có AB = 6cm; AC = 4,5; BC = 7,5cm
a) Chứng minh tam giác ABC vuông
b) Tính góc B,C và đường cao AH
c) Lấy M bất kì trên cạnh BC. Gọi hình chiếu của M trên AB;AC lần lượt là P và Q. Chứng minh PQ=AM. Hỏi M ở vị trí nào thì PQ có độ dài nhỏ nhất
a) Ta thấy BC là cạnh dài nhất sẽ là cạnh huyền
Áp dụng Pytago đảo
AB² + AC² = 6² + 4,5² = 56.25
BC² = 7,5² = 56,25
=> AB² + AC² = BC²
=> Vuông tại A
=> Tam giác ABC là tam giác vuông
b)
sinB = AC / BC = 4,5 / 7,5 = 3 / 5
=> Góc B = 36°52'
sinC = AB / BC = 6 / 7,5 = 4 / 5
=> Góc C = 53°7'
c)
Ta dễ dàng cm AQMP là hình chữ nhật
Suy ra: 2 đường chéo hình chữ nhật bằng nhau.
Để PQ nhỏ nhất AM nhỏ nhất
AM VUÔNG GÓC VỚI BC
Vậy khi M là hình chiếu của điểm A trên BC thí pq nhỏ nhất
Tham khảo:Một chiếc phà chạy xuôi dòng từ A đến B mất 3h, khi chạy về mất 6h. Hỏi nếu phà tắt máy trôi theo dòng nước thì từ A đến B mất bao lâu
Gọi v1 là vận tốc phà, v2 là vận tốc dòng nước
Chạy xuôi dòng mất 3h nên: s= 3 * (v1 + v2) (1)
Chạy về (ngược dòng) mất 6h nên: s= 6 * (v1 - v2) (2)
(1), (2) => 3 * (v1 + v2) = 6 * (v1 - v2) (=s)
<=> 3v1 + 3v2 = 6v1 - 6v2
=> v1 = 3 * v2 (4)
(1), (4) => s = 3 * (3v2 + v2) = 12 * v2
Tắt máy trôi theo dòng nước thì mất: t' = s / v2 = 12*v2 / v2 = 12 (h)
Tham khảo:Một tam giác vuông có cạnh huyền là 5 và đường cao ứng với cạnh huyền là 2. Tính cạnh nhỏ nhất của tam giácnày?
Goi 2 canh goc vuong la b va c (b > c)
Ap dung he thuc luong va dinh ly Pythagore ta co he pt :
{ b.c = 5.2 = 10 (1)
{ b^2 + c^2 = 5^2 = 25 (2)
(1) ---> 2bc = 20 (3)
(2) + (3) ---> (b+c)^2 = 45 ---> b+c = 3 can 5 (4)
(2) - (3) ---> (b-c)^2 = 5 ---> b-c = can 5 (5)
(4),(5) ---> b = 2 can 5 ; c = can 5
Vay canh nho nhat cua tam giac vuong do la can 5.
A B C O I H M N
Gọi N là trung điểm của AC. Nối N với O và M.
Do H là trực tâm \(\Delta\)ABC => ^BAH + ^ABC = 900 (1)
Dễ thấy MN là đường trung bình \(\Delta\)ABC => MN // AB => ^NMC = ^ABC (2)
Lại có: ^NMO + ^NMC = 900 (3)
Từ (1); (2) và (3) => ^BAH = ^NMO. Tương tự: ^ABH = ^MNO
=> \(\Delta\)AHB ~ \(\Delta\)MON (g.g) => \(\frac{AH}{MO}=\frac{AB}{MN}=2\)(Do MN là đg trung bình \(\Delta\)ABC)
\(\Rightarrow\frac{AH}{MO}=\frac{AI}{MI}=2\)(Vì I là trọng tâm và AM là trung tuyến \(\Delta\)ABC)
Xét \(\Delta\)AHI và \(\Delta\)MOI: ^HAI = ^OMI (Do AH // OM); \(\frac{AH}{MO}=\frac{AI}{MI}\)=> \(\Delta\)AHI ~ \(\Delta\)MOI (c.g.c)
\(\Rightarrow\frac{IH}{IO}=\frac{IA}{IM}=2\Rightarrow IH^2=4.IO^2\).Tương tự \(HA^2=4.OM^2\)
\(\Rightarrow\sqrt{\frac{IO^2+OM^2}{IH^2+HA^2}}=\sqrt{\frac{IO^2+OM^2}{4\left(IO^2+OM^2\right)}}=\frac{1}{2}.\)
ĐS: 1/2.