Cho hình vuông ABCD . Lấy điểm I trong hình vuông sao cho ID = IC và IDC=ICD =15 độ . Tính ADI;DIC . CMR : AI=BI
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Do x1 tỉ lệ thuận với y1 -> y1= x1k -> k= y1/x1 -> k= -7/2
thay vào => y2 = x2 . -7/2 -> y2= -6 . -7/2 = 21.
Vậy x2 = -6 thì y2 = 21
b) Cmtt -> k= -1/3 => x2= y2/k = 3/(-1/3) = -9
Vậy nếu y2 = 3 thì x2 = -9
áp dụng tính chất dãy tỉ số bằng nhau ta có
a/b=b/c=c/a=(a+b+c)/(b+c+a)=1 ( Vì a+b+c khác 0)
=> a=b=c=2006
Áp dụng tính chất của dãy tỉ số bằng nhau,ta có:
\(\frac{2a+b+c}{a}=\frac{2b+c+a}{b}=\frac{2c+a+b}{c}=\frac{2a+b+c+2b+c+a+2c+a+b}{a+b+c}=\frac{4\left(a+b+c\right)}{a+b+c}=4\)
\(\Rightarrow\frac{2a+b+c}{a}=4\Rightarrow2a+b+c=4a\Rightarrow b+c=4a-2a=2a\)
\(\frac{2b+c+a}{b}=4\Rightarrow2b+c+a=4b\Rightarrow c+a=4b-2b=2b\)
\(\frac{2c+a+b}{c}=4\Rightarrow2c+a+b=4c\Rightarrow a+b=4c-2c=2c\)
Suy ra \(P=\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=\frac{2c.2a.2b}{abc}=\frac{8abc}{abc}=8\)
Vậy P=8
Cho hỏi tớ sai chỗ nào ạ :>?Góp ý giúp nha?
a) Vì \(\widehat{A}=90^o\rightarrow AB\perp AC\)
Mà \(HE\perp AC\)
-> AB song song với HE
b) Vì AB song song với HE (theo a)
=> \(\widehat{ABH}=\widehat{EHC}=50^o\)(2 góc đồng vị)
Ta có: \(\widehat{AHE}+\widehat{EHC}=\widehat{AHC}\)
\(\Rightarrow\widehat{AHE}+50^o=90^o\left(AH\perp BC\right)\)
\(\Rightarrow\widehat{AHE}=90^o-50^o=40^o\)
Vì AB song song với HE
=> \(\widehat{AHE}=\widehat{BAH}=40^o\)(2 góc so le trong)
Câu hỏi của ❖︵Ňɠυүễη Çɦâυ Ƭυấη Ƙїệт♔ - Toán lớp 7 - Học toán với OnlineMath
Hình vẽ:
Ta có: ABCD là hình vuông \(\Rightarrow\widehat{BAC}=\widehat{ABC}=\widehat{BCD}=\widehat{ADC}=90^o.\)và \(AD=BC\)
ta có: \(\hept{\begin{cases}\widehat{ADI}=\widehat{ADC}-\widehat{IDC}=90^o-15^o=75^o\\\widehat{BCI}=\widehat{BCD}-\widehat{ICD}=90^o-15^o=75^o.\end{cases}\Rightarrow\widehat{ADI}=\widehat{BCI}\left(=75^o\right)}\)
Xét \(\Delta ADI\)và \(\Delta BCI\)có: \(\hept{\begin{cases}AD=BC\left(cmt\right)\\\widehat{ADI}=\widehat{BCI}\left(cmt\right)\\ID=IC\left(gt\right)\end{cases}}\Rightarrow\Delta ADI=\Delta BCI\left(c.g.c\right)\)
\(\Rightarrow\widehat{DAI}=\widehat{CBI}\)(2 góc tương ứng)
ta lại có: \(\hept{\begin{cases}\widehat{IBA}=\widehat{CBA}-\widehat{CBI}\\\widehat{IAB}=\widehat{BAD}-\widehat{DAI}\end{cases}}\)mà \(\hept{\begin{cases}\widehat{CBA}=\widehat{BAD}\left(=90^o\right)\\\widehat{CBI}=\widehat{DAI}\left(cmt\right)\end{cases}\Rightarrow\widehat{IBA}=\widehat{IAB}}\)
Xét \(\Delta IAB\)có: \(\widehat{IBA}=\widehat{IAB}\)\(\Rightarrow\Delta IAB\)cân
\(\Rightarrow AI=BI\left(đpcm\right)\)