tìm gtnn của:
B=(2x)2+2(y-1)2-5
C=\(\dfrac{5}{3-\left(4x+1\right)^2}\) (C>0)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, ( \(\dfrac{1}{4}\) + \(\dfrac{-5}{13}\)) +( \(\dfrac{2}{11}\) + \(\dfrac{-8}{13}\) + \(\dfrac{3}{4}\))
= \(\dfrac{1}{4}\) - \(\dfrac{5}{13}\) + \(\dfrac{2}{11}\) - \(\dfrac{8}{13}\) + \(\dfrac{3}{4}\)
= ( \(\dfrac{1}{4}\) + \(\dfrac{3}{4}\)) - ( \(\dfrac{5}{13}\) + \(\dfrac{8}{13}\)) + \(\dfrac{2}{11}\)
= 1 - 1 + \(\dfrac{2}{11}\)
= \(\dfrac{2}{11}\)
b, ( \(\dfrac{21}{31}\) + \(\dfrac{-16}{7}\)) +( \(\dfrac{44}{53}\) + \(\dfrac{10}{31}\)) + \(\dfrac{9}{53}\)
= \(\dfrac{21}{31}-\dfrac{16}{7}+\dfrac{44}{53}+\dfrac{10}{31}+\dfrac{9}{53}\)
= ( \(\dfrac{21}{31}\) + \(\dfrac{10}{31}\)) + ( \(\dfrac{44}{53}\) + \(\dfrac{9}{53}\)) - \(\dfrac{16}{7}\)
= 1 + 1 - \(\dfrac{16}{7}\)
= \(\dfrac{14}{7}-\dfrac{16}{7}\)
= - \(\dfrac{2}{7}\)
\(\text{#040911}\)
Vì \(-\dfrac{5}{12}< 0\)
\(\Rightarrow-\dfrac{5}{12}< \dfrac{a}{5}\text{ }\forall\text{ }a\)
\(\dfrac{a}{5}< \dfrac{1}{4}\)
\(\Rightarrow a=1\)
Vậy, để thỏa mãn \(-\dfrac{5}{12}< \dfrac{a}{5}< \dfrac{1}{4}\) thì \(a=1.\)
B = [1200 - ( 16 - 6 )3 ] : 40
B = [1200 - 103 ] : 40
B = [1200 - 1000] : 40
B = 200 : 40
B = 5
B = [ 1200 - (42 - 2.3)3 ] : 40
B = [ 1200 - (16 - 6)3 ] : 40
B = [ 1200 - 1000]: 40
B = 200: 40
B = 5
\(\left(1-\dfrac{1}{2}\right)\times\left(1-\dfrac{1}{3}\right)\times\left(1-\dfrac{1}{4}\right)\times...\times\left(1-\dfrac{1}{2023}\right)\\ =\dfrac{1}{2}\times\dfrac{2}{3}\times\dfrac{3}{4}\times...\times\dfrac{2022}{2023}\\ =\dfrac{1}{2023}\)
Bài 4:
b. Ta có:
$(2-x)^2\geq 0$ với mọi $x$
$(y-1)^2\geq 0$ với mọi $y$
$\Rightarrow B=(2-x)^2+2(y-1)^2-5\geq 0+2.0-5=-5$
Vậy $B_{\min}=-5$. Giá trị này đạt tại $2-x=y-1=0$
$\Lefrightarrow x=2; y=1$
c.
Ta thấy: $(4x+1)^2\geq 0$ với mọi $x$
$\Rightarrow 3-(4x+1)^2\leq 3$
$\Rightarrow C=\frac{5}{3-(4x+1)^2}\geq \frac{5}{3}$
Vậy $C_{\min}=\frac{5}{3}$. Giá trị này đạt tại $4x+1=0\Leftrightarrow x=\frac{-1}{4}$
Bài 5:
c.
Vì:
$(2x+1)^2\geq 0$ với mọi $x$
$(y-3,5)^2\geq 0$ với mọi $y$
$\Rightarrow -P= (2x+1)^2+7(y-3,5)^2-\frac{2}{3}\geq 0+7.0-\frac{2}{3}=\frac{-2}{3}$
$\Rightarrow P\leq \frac{2}{3}$
Vậy $P_{\max}=\frac{2}{3}$. Giá trị này đạt tại $2x+1=y-3,5=0$
$\Leftrightarrow x=\frac{-1}{2}; y=3,5$
\(\left(x-2\right)^5-\left(x-2\right)^3=0\)
\(\Rightarrow\left(x-2\right)^3\left(\left(x-2\right)^2-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-2=0\\\left(x-2\right)^2-1=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=2\\\left(x-2\right)^2=1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=2\\x-2=1\\x-2=-1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=2\\x=3\\x=1\end{matrix}\right.\)
Vậy \(x\in\left\{1;2;3\right\}\)
⇒ ( x - 2)3 . (x - 2)2 - (x - 2)3 . 1 = 0 ⇒ ( x - 2)3 . [( x - 2)2 - 1] = 0
\(C=\dfrac{5}{3-\left(4x+1\right)^2}\)
Điều kiện xác định khi
\(3-\left(4x+1\right)^2\ne0\Leftrightarrow\left[{}\begin{matrix}4x+1\ne\sqrt[]{3}\\4x+1\ne-\sqrt[]{3}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x\ne\dfrac{\sqrt[]{3}-1}{4}\\x\ne\dfrac{-\sqrt[]{3}-1}{4}\end{matrix}\right.\)
Ta có :
\(\left(4x+1\right)^2\ge0,\forall x\)
\(\Leftrightarrow3-\left(4x+1\right)^2\le3\)
\(\Leftrightarrow C=\dfrac{5}{3-\left(4x+1\right)^2}\ge\dfrac{5}{3}\)
Vậy \(GTNN\left(C\right)=\dfrac{5}{3}\left(tạix=-\dfrac{1}{4}\right)\)
\(B=\left(2x\right)^2+2\left(y-1\right)^2-5\)
vì \(\left\{{}\begin{matrix}\left(2x\right)^2\ge0,\forall x\\2\left(y-1\right)^2\ge0,\forall y\end{matrix}\right.\)
\(\Rightarrow B=\left(2x\right)^2+2\left(y-1\right)^2-5\ge-5\)
Dấu "=" xảy tại khi
\(\left\{{}\begin{matrix}2x=0\\2\left(y-1\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=1\end{matrix}\right.\)
Vậy \(GTNN\left(B\right)=-5\left(tạix=0;y=1\right)\)