K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 2 2018

Đặt \(\sqrt{x^2+7}=a\left(a>0\right)\)

Khi đó phương trình trở thành :

\(a^2+4x=\left(x+4\right)a\Leftrightarrow a^2-ax+4x-4a=0\)

\(\Leftrightarrow\left(a^2-ax\right)+\left(4x-4a\right)=0\Leftrightarrow a\left(a-x\right)+4\left(x-a\right)=0\)

\(\Leftrightarrow\left(a-x\right)\left(a-4\right)=0\Leftrightarrow\orbr{\begin{cases}a-x=0\\a-4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}a=x\\a=4\end{cases}}}\)

+) \(a=x\Rightarrow\sqrt{x^2+7}=x\)( điều kiện bổ sung \(x\ge0\))

\(\Leftrightarrow x^2+7=x^2\Leftrightarrow7=0\)( vô lý ) => loại

+) \(a=4\)( thỏa mãn điều kiện a > 0 )  \(\Rightarrow\sqrt{x^2+7}=4\Leftrightarrow x^2+7=16\)

\(\Leftrightarrow x^2=9\Leftrightarrow\orbr{\begin{cases}x=3\\x=-3\end{cases}}\)

Vậy phương trình có tập nghiệm S = { 3 ; -3 }

Tích cho mk nhoa !!!! ~~

15 tháng 4 2020

P/S: Không cần đặt ẩn phụ cho phí t/g!

\(ĐK:x\inℝ\)

\(x^2+4x+7=\left(x+4\right)\sqrt{x^2+7}\)

\(\Leftrightarrow x\sqrt{x^2+7}+4\sqrt{x^2+7}=x^2+4x+7\)

\(\Leftrightarrow\left(x^2+7-x\sqrt{x^2+7}\right)-\left(4\sqrt{x^2+7}-4x\right)=0\)

\(\Leftrightarrow\left(\sqrt{x^2+7}-x\right)\left(\sqrt{x^2+7}-4\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x^2+7}=x\left(1\right)\\\sqrt{x^2+7}=4\left(2\right)\end{cases}}\)

Giải (1) ta thấy vô nghiệm

\(\left(2\right)\Leftrightarrow x^2+7=16\Leftrightarrow x^2=9\Leftrightarrow x=\pm3\)

Vậy phương trình có tập nghiệm S = {3;-3}

26 tháng 2 2018

Áp dụng bđt : 1/a + 1/b >= 4/a+b thì :

p = 1/a + 1/b >= 4/a+b >= 4/\(2\sqrt{2}\)=  \(\sqrt{2}\)

Dấu "=" xảy ra <=> a=b=\(\sqrt{2}\)

Vậy ...............

Tk mk nha

26 tháng 2 2018

mik cũng muốn lắm nhưng nếu có bạn mà bị tặng thêm mấy cục đá thì nguy hiểm lắm lun ớ

26 tháng 2 2018

KO ĐĂNG CÂU HỎI LINH TINH

25 tháng 4 2018

tìm x y xong thay vào