cho AB=4cm,CD =2,5 cm và MN + EF= 39 cm.Tìm MN và EF biết AB,CD tỉ lệ với MN,EF (áp dụng đoạn thẳng tỉ lệ của định lý Talét).
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x-1\right)^3-x\left(x+1\right)^2=5x\left(2-x\right)-11\left(x+2\right)\)
\(\Leftrightarrow\left(x^3-3x^2+3x-1\right)-x\left(x^2+2x+1\right)=10x-5x^2-11x-22\)
\(\Leftrightarrow x^3-3x^2+3x-1-x^3-2x^2-x=-x-5x^2-22\)
\(\Leftrightarrow-5x^2+2x-1=-5x^2-x-22\)
\(\Leftrightarrow-5x^2+5x^2+2x+x=1-22\)
\(\Leftrightarrow3x=-21\Leftrightarrow x=-7\)
Vậy \(x=-7\)
\(\left(x-1\right)^3-x\left(x+1\right)^2=5x\left(2-x\right)-11\left(x+2\right)\)
\(\Leftrightarrow\left(x^3-3x^2+3x-1\right)-x\left(x^2+2x+1\right)=10x-5x-11x-22\)
\(\Leftrightarrow x^3-3x^2+3x-1-x^3-2x^2-x=-x-5x^2-22\)
\(\Leftrightarrow-5x^2+2x-1=-5x^2-x-22\)
\(\Leftrightarrow-5x^2+5x^2+2x+x=1-22\)
\(\Leftrightarrow3x=-21\Leftrightarrow x=-7\)
Vậy \(x=-7\)
2. Câu hỏi của Đình Hiếu - Toán lớp 7 - Học toán với OnlineMath
1.Vẽ AH \(\perp\)BC;H\(\in\)BC
+, Xét D nằm trên đoạn thẳng HC
\(\Delta HAB\)có \(\widehat{H}\)= 900 Theo định lý Pytago ta có:
\(AH^2+BH^2=AB^2\Rightarrow AH^2=c^2-BH^2\)
\(\Delta HAD\)có \(\widehat{H}\)=900,theo định lý Pytago tacó:
\(AH^2+DH^2=AD^2\Rightarrow AH^2=d^2-DH^2\)
Do đó \(d^2-DH^2=c^2-BH^2\Rightarrow d^2=c^2+DH^2-BH^2\)
\(\Rightarrow d^2=c^2+BD\left(DH-BH\right)\Rightarrow d^2n=c^2n+mn\left(DH-BH\right)\)
Chứng minh tương tự ta có:
\(d^2m=b^2m+mn\left(-DH-CH\right)\)
Ta có: \(d^2m+b^2m+c^2n+mn\left(-DH-CH+DH-BH\right)\)
\(d^2\left(m+n\right)=b^2m+c^2n+mn\left(-CH-BH\right)\)
\(d^2a=b^2m+c^2n-amn\)
+, Xét D nằm trên đoạn thẳng HB
Chứng minh tương tự trên ta cũng có \(d^2a=b^2m+c^2n-amn\)
2.\(\widehat{ADC}>\widehat{ABC}\) (ADC là góc ngoài của tam giác ABD)
Do đó vẽ E trên cạnh AC sao cho góc ADE =góc ABC
ta có AE<AC
XÉT tam giác ABD và tam gác ADE có : góc BAD = góc DAE(AD phân giác)
góc ABD=góc ADE
do đó \(\Delta ABD\infty\Delta ADE\Rightarrow\frac{AD}{AE}=\frac{AB}{AD}\Rightarrow AD^2=AB.AE\)
do đó \(AD^2< AB.AC\)
a) \(\left(x^2+x+1\right)\left(x^2+x+2\right)=12\)
\(\Leftrightarrow x^4+2x^3+4x^2+3x+2=12\)
\(\Leftrightarrow x^4+2x^3+4x^2+3x+2=12-12\)
\(\Leftrightarrow x^4+2x^3+4x^2-10=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(x^2+x+5\right)\)
\(\Rightarrow\hept{\begin{cases}x=1\\x=2\end{cases}}\)
b) \(x\left(x+1\right)\left(x^2+x+1\right)=42\)
\(\Leftrightarrow x^4+2x^3+2x^2+x=42\)
\(\Leftrightarrow x^4+2x^3+2x^2+x=42-42\)
\(\Leftrightarrow x^4+2x^3+2x^2+x=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+3\right)\left(x^2+x+7=0\right)\)
\(\Rightarrow\hept{\begin{cases}x=2\\x=-3\\x=-\frac{1}{2}\end{cases}}\)
c) làm tương tự b).
d) \(\left(x^2+1\right)^2+3x\left(x^2+1\right)+2x^2=0\)
\(\Leftrightarrow\left(x+1\right)^2\left(x^2+x+1\right)=0\)
\(\Rightarrow\hept{\begin{cases}x=1\\x=-\frac{1}{2}\end{cases}}\)
Trình độ hơi thấp, có gì sai sót mong bạn bỏ qua cho ạ
Chỉ gợi ý thôi.
a) đặt x^2+x+1=t
=> pt <=> t(t+1)=12
tự làm nốt.
b) x(x+1)(x^2+x+1)=42
<=> (x^2+x)(x^2+x+1)=42
đặt x^2+x=t
=> pt <=>t(t+1)=42
...............................
c) x(x+1)(x-1)(x+2)=24
(x^2+x)(x^2+x-2)=24
Đặt x^2+x=t
=> pt <=> t(t-2)=24
............................
d) (x^2+1)^2+3x(x^2+1)+2x^2=0
(x^2+1)^2+x(x^2+1)+2x(x^2+1)+2x^2=0
(x^2+1)(x^2+x+1)+2x(x^2+x+1)=0
(x^2+x+1)(x^2+2x+1)=0
(x^2+x+1)(x+1)^2=0 (1)
Ta có: x^2+x+1=(x+1/2)^2+3/4>0 với mọi x
=> (1) <=> (x+1)^2=0
<=> x=-1
Vậy x=-1