Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Gọi đường thẳng cần tìm là (d): y=ax+b(a<>0)
Thay x=-3 và y=0 vào (d), ta được:
\(a\cdot\left(-3\right)+b=0\)
=>-3a+b=0
=>b=3a
=>(d): y=ax+3a
Thay x=0 và y=2 vào (d), ta được:
\(a\cdot0+3a=2\)
=>3a=2
=>\(a=\dfrac{2}{3}\)
Vậy: (d): \(y=\dfrac{2}{3}x+3\cdot\dfrac{2}{3}=\dfrac{2}{3}x+2\)

a: \(A=\dfrac{2x}{x+3}+\dfrac{x+1}{x-3}+\dfrac{3-11x}{9-x^2}\)
\(=\dfrac{2x}{x+3}+\dfrac{x+1}{x-3}+\dfrac{11x-3}{\left(x-3\right)\left(x+3\right)}\)
\(=\dfrac{2x\left(x-3\right)+\left(x+1\right)\left(x+3\right)+11x-3}{\left(x-3\right)\left(x+3\right)}\)
\(=\dfrac{2x^2-6x+x^2+4x+3+11x-3}{\left(x-3\right)\left(x+3\right)}=\dfrac{3x^2+9x}{\left(x-3\right)\left(x+3\right)}=\dfrac{3x}{x-3}\)
b: Thay x=5 vào A, ta được:
\(A=\dfrac{3\cdot5}{5-3}=\dfrac{15}{2}\)

a; \(x\left(x+1\right)\) - (\(x+1\))2 = 5
(\(x-x-1\))(\(x+1\))= 5
(0 - 1).(\(x+1\)) = 5
-1.(\(x+1\)) = 5
\(x+1\) = -5
\(x=-5-1\)
\(x=-6\)
Vậy \(x=-6\)
b; \(x^2\) - 4\(x=0\)
\(x\).(\(x-4\)) = 0
\(\left[{}\begin{matrix}x=0\\x-4=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)
Vậy \(x\) \(\in\) {0; 4}

a; (2\(x\) - 3)2
= (2\(x\))2 - 2.2\(x\).3 + 32
= 4\(x^2\) - (2.2.3).\(x\) + 9
= 4\(x^2\)- 12\(x\) + 9
b; (\(x-3\))3
= \(x^3\) - 3\(x^2\).3 + 3\(x\).32 - 33
= \(x^3\) - (3.3)\(x^2\) + (3.32).\(x\) - 27
= \(x^3\) - 9\(x^2\) + 27\(x\) - 27+

a: Xét ΔHDC có
N,M lần lượt là trung điểm của HD,HC
=>NM là đường trung bình của ΔHDC
=>NM//DC và \(MN=\dfrac{DC}{2}\)
Ta có: NM//DC
DC\(\perp\)AD
Do đó: NM\(\perp\)DA
b: \(MN=\dfrac{DC}{2}\)
mà \(AB=\dfrac{DC}{2}\)
nên MN=AB
ta có: MN//CD
CD//AB
Do đó: MN//AB
Xét tứ giác ABMN có
AB//MN
AB=MN
Do đó: ABMN là hình bình hành

GT | \(\Delta ABC,AB=AC,M\) là trung điểm AC M là trung điểm HN |
KL | a) AHCN là hình chữ nhật b) AB // HN |
a) Do \(AH\) là đường cao của \(\Delta ABC\left(gt\right)\)
\(\Rightarrow AH\perp BC\)
\(\Rightarrow\widehat{AHC}=90^0\)
Tứ giác AHCN có:
M là trung điểm của AC (gt)
M là trung điểm của HN (gt)
\(\Rightarrow AHCN\) là hình bình hành
Mà \(\widehat{AHC}=90^0\left(cmt\right)\)
\(\Rightarrow AHCN\) là hình chữ nhật
b) Do AHCN là hình chữ nhật (cmt)
\(\Rightarrow AN=HC\) và \(AN\) // \(HC\)
\(\Delta ABC\) cân tại A có AH là đường cao (gt)
\(\Rightarrow AH\) cũng là đường trung trực của \(\Delta ABC\)
\(\Rightarrow H\) là trung điểm của BC
\(\Rightarrow BH=HC\)
Mà \(AN=HC\left(cmt\right)\)
\(\Rightarrow AN=BH\)
Do \(AN\) // \(HC\left(cmt\right)\)
\(\Rightarrow AN\) // \(BH\)
Tứ giác ABHN có:
\(AN\) // \(BH\left(cmt\right)\)
\(AN=BH\left(cmt\right)\)
\(\Rightarrow ABHN\) là hình bình hành
\(\Rightarrow AB\) // \(HN\)

Giải:
\(\widehat{A}\) - \(\widehat{D}\) = 300 ⇒ \(\widehat{A}\) = 300 + \(\widehat{D}\)
Mặt khác \(\widehat{A}\) + \(\widehat{D}\) = 1800 (hai góc trong cùng phía)
Thay A = 300 + \(\widehat{D}\) vào \(\widehat{A}+\widehat{D}=180^0\) ta có:
\(30^0+\widehat{D}+\widehat{D}\) = 1800
\(\widehat{D}+\widehat{D}\) = 1800 - 300
2\(\widehat{D}\) = 1500
\(\widehat{D}\) = 1500 : 2 = 750
\(\widehat{A}=30^0+75^0\) = 1050
\(\widehat{B}=5\widehat{C}\) ; \(\widehat{B}\) + \(\widehat{C}\) = 1800 (hai góc trong cùng phía)
5\(\widehat{C}\) + \(\widehat{C}\) = 1800 ⇒ 6\(\widehat{C}\) = 1800 ⇒ \(\widehat{C}=180^0:3\) = 600
\(\widehat{B}\) = 1800 - 600 = 1500
Đề thiếu rồi em, muốn tính được số đo các góc thì phải biết đâu là 2 đáy hình thang.
Ví dụ AB và CD là 2 đáy sẽ khác với AD và BC là 2 đáy

Olm chào em, hiện tại câu hỏi của em chưa hiển thị đấy có thể là do file mà em tải lên bị lỗi nên đã không hiển thị trên diễn đàn. Em nên viết đề bài trực tiếp trên Olm. Như vậy em sẽ không mắc phải lỗi file đề như vậy. Điều này giúp em nhanh chóng nhận được sự trợ giúp từ cộng đồng olm. Cảm ơn em đã đồng hành cùng Olm.
Bài 4:
a: Xét tứ giác ADME có \(\widehat{ADM}=\widehat{AEM}=\widehat{EAD}=90^0\)
nên ADME là hình chữ nhật
b: Ta có: MD\(\perp\)AB
AC\(\perp\)AB
Do đó: MD//AC
Ta có: ME\(\perp\)AC
AB\(\perp\)AC
Do đó: ME//AB
Xét ΔABC có
M là trung điểm của BC
MD//AC
Do đó:D là trung điểm của AB
Xét ΔABC có
M là trung điểm của BC
ME//AB
Do đó: E là trung điểm của AC
Ta có: EM=AD(ADME là hình chữ nhật)
AD=DB
Do đó; EM=BD
Xét tứ giác BDEM có
BD//EM
BD=EM
Do đó: BDEM là hình bình hành
c: ADME là hình chữ nhật
=>AM=DE
Ta có: ADME là hình chữ nhật
=>AM cắt DE tại trung điểm của mỗi đường
=>O là trung điểm chung của AM và DE
Ta có: \(OA=OM=\dfrac{AM}{2}\)
\(OD=OE=\dfrac{DE}{2}\)
mà AM=DE
nên OA=OM=OD=OE=AM/2=DE/2
ta có: ΔABC vuông tại A
mà AM là đường trung tuyến
nên \(AM=\dfrac{BC}{2}\)
=>\(2OE=\dfrac{BC}{2}\)
=>BC=4OE
d: Ta có: ΔHAC vuông tại H
mà HE là đường trung tuyến
nên HE=AE
mà AE=MD(ADME là hình chữ nhật)
nên HE=MD
Ta có: BDEM là hình bình hành
=>DE//MB
=>DE//BC
=>DE//HM
Xét tứ giác HMED có
HM//ED
HE=MD
Do đó: HMED là hình thang cân
e: Xét tứ giác ABCI có
E là trung điểm chung của AC và BI
=>ABCI là hình bình hành
=>AI//BC
Xét tứ giác AMCF có
E là trung điểm chung của AC và MF
=>AMCF là hình bình hành
=>AF//CM
=>AF//BC
ta có: AF//BC
AI//BC
mà AF,AI có điểm chung là A
nên A,F,I thẳng hàng
Bài 6:
\(B=x^4-4x^3-2x^2+12x+9\)
\(=x^4-3x^3-x^3+3x^2-5x^2+15x-3x+9\)
\(=x^3\left(x-3\right)-x^2\left(x-3\right)-5x\left(x-3\right)-3\left(x-3\right)\)
\(=\left(x-3\right)\left(x^3-x^2-5x-3\right)\)
\(=\left(x-3\right)\left(x^3-3x^2+2x^2-6x+x-3\right)\)
\(=\left(x-3\right)\left(x-3\right)\cdot\left(x^2+2x+1\right)\)
\(=\left(x-3\right)^2\cdot\left(x+1\right)^2=\left[\left(x-3\right)\left(x+1\right)\right]^2\)
=>B là bình phương của một số nguyên