K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 4 2024

(x-1)(6x+1) - (2x+1)(3x-5) = -10

<=> (6x2 + x - 6x - 1) - (6x2 - 10x + 3x - 5) = -10

<=> 6x2 + x - 6x - 1 - 6x2 + 10x - 3x + 5 = -10

<=> 2x + 4 = -10

<=> 2x = -14

<=> x = -7

Vậy x = -7

2 tháng 6 2024

(x-1)(6x+1) - (2x+1)(3x-5) = -10

<=> (6x2 + x - 6x - 1) - (6x2 - 10x + 3x - 5) = -10

<=> 6x2 + x - 6x - 1 - 6x2 + 10x - 3x + 5 = -10

<=> 2x + 4 = -10

<=> 2x = -14

<=> x = -7

Vậy x = -7

x=2023 nên x+1=2024

\(A\left(x\right)=x^5-2024x^4+2024x^3-2024x^2+2024x-2024\)

\(=x^5-x^4\left(x+1\right)+x^3\left(x+1\right)-x^2\left(x+1\right)+x\left(x+1\right)-\left(x+1\right)\)

\(=x^5-x^5-x^4+x^4+...-x-1\)

=-1

29 tháng 4 2024

\(P\left(x\right)=x^{2023}-2022x^{2022}-2022x^{2021}-\dots-2022x^2-2022x+1\)

\(\Rightarrow P\left(2023\right)=2023^{2023}-2022\cdot2023^{2022}-2022\cdot2023^{2021}-\dots-2022\cdot2023^2-2022\cdot2023+1\)

\(=2023^{2023}-\left(2023-1\right)\cdot2023^{2022}-\left(2023-1\right)\cdot2023^{2021}-\dots-\left(2023-1\right)\cdot2023^2-\left(2023-1\right)\cdot2023+1\)

\(=2023^{2023}-2023^{2023}+2023^{2022}-2023^{2022}+2023^{2021}-\dots-2023^3+2023^2-2023^2+2023+1\)

\(=2024\)

___

Cách giải: Tách các hệ số để làm xuất hiện các lũy thừa của \(2023\)

29 tháng 4 2024

 Ta thấy:    \(x=2023\Rightarrow x-1=2022\) 

Ta có:

\(P\left(x\right)=x^{2023}-\left(x-1\right)\times x^{2022}-\left(x-1\right)\times x^{2021}-...-\left(x-1\right)\times x^2-\left(x-1\right)\times x+1\)\(P\left(x\right)=x^{2023}-x^{2023}+x^{2022}-x^{2022}+x^{2021}-....-x^3+x^2-x^2+x+1\)

\(P\left(x\right)=x+1\)

Thay x=2023, ta có:

\(P\left(2023\right)=2023+1=2024\)

x=2023 nên x-1=2022

\(P=x^{2023}-2022x^{2022}-2021x^{2021}-...-2022x+1\)

\(=x^{2023}-x^{2022}\left(x-1\right)-x^{2021}\left(x-1\right)-...-x\left(x-1\right)+1\)

\(=x^{2023}-x^{2023}+x^{2022}-x^{2022}+...-x^2+x+1\)

=x+1

=2023+1=2024

29 tháng 4 2024

=1 vì đó là câu tính nhanh nên kết quả phải = 1

 

Câu 1: x tỉ lệ thuận với y theo hệ số tỉ lệ là -2

=>x=-2y

=>\(y=-\dfrac{1}{2}x\)

Câu 2: Hệ số tỉ lệ là:

\(k=x\cdot y=4\cdot\left(-1\right)=-4\)

28 tháng 4 2024

Giải:

Số nhỏ nhất chia cho 2 dư 1, chia 3 dư 1 là 1

Các số cho 2 và 3 đều dư 1 là các số thuộc dãy số sau:

1; 7; 13; 19; 25; 31;...;

Các số từ 1 đến 20 chia cho 2 và 3 đều dư 1 là:

1; 7; 13; 19

Kết luận: từ 1 đến 20 các số chia cho 2 và 3 đều dư 1 lần lượt là các số sau1; 7; 13; 19

28 tháng 4 2024

Cách hai:

Gọi số thỏa mãn đề bài là \(x\)\(x\) \(\in\) N; 1 ≤ \(x\) ≤ 20

Theo bài ra ta có: \(\left\{{}\begin{matrix}x-1⋮2\\x-1⋮3\end{matrix}\right.\)

⇒ \(x-1\in\) BC(2; 3)

2 = 2; 3 = 3; BCNN(2;3) = 2.3 = 6

\(x-1\) \(\in\) B(6) = {0; 6; 12; 18; 24; 30;..;}

\(x\in\) {1; 7; 13; 19; 25; 31;...}

Vì 1 ≤ \(x\) ≤ 20 nên \(x\) \(\in\) {1; 7; 13; 19}

Kết luận các số tự nhiên từ 1 đến 20 chia 2 và 3 đều dư 1 là các số sau: 1; 7; 13; 19

 

 

28 tháng 4 2024

Tham khảo:

Để chứng minh \( QM + QD < AM + AD \), chúng ta có thể sử dụng bất đẳng thức tam giác. Trong trường hợp này, \( QM \) và \( QD \) là độ dài các đoạn thẳng, nên chúng ta có thể áp dụng bất đẳng thức tam giác để chứng minh điều cần chứng minh.

Bất đẳng thức tam giác cho biết rằng trong một tam giác bất kỳ, tổng độ dài của hai cạnh bất kỳ phải lớn hơn độ dài cạnh còn lại. Áp dụng bất đẳng thức tam giác vào tam giác \( AMD \), ta có:

\[
AM + AD > MD
\]

Tương tự, áp dụng bất đẳng thức tam giác vào tam giác \( QMD \), ta có:

\[
QM + QD > MD
\]

Kết hợp hai bất đẳng thức trên, ta có:

\[
(QM + QD) + (AM + AD) > 2 \times MD
\]

Nhưng vì \( Q \) nằm trong tam giác \( AMD \), nên \( MD \) không lớn hơn \( MA \) (vì \( Q \) nằm trong tam giác \( AMD \), nên \( MD \) không vượt quá \( MA \)). Vì vậy:

\[
2 \times MD < MA + AD
\]

Tổng hợp lại, ta có:

\[
(QM + QD) + (AM + AD) > MA + AD
\]

Tức là:

\[
QM + QD > AM + AD
\]

Vậy, đã chứng minh được \( QM + QD < AM + AD \).

Sửa đề: \(P=3x^7-4x^2+5x-9-3x^7-x-2\)

\(=\left(3x^7-3x^7\right)+\left(-4x^2\right)+\left(5x-x\right)+\left(-9-2\right)\)

\(=-4x^2+4x-11\)

NV
26 tháng 4 2024

ĐKXĐ: \(x\ne3\)

\(\dfrac{12}{\left|x-3\right|}=\dfrac{6}{7}\)

\(\Leftrightarrow\left|x-3\right|=12:\dfrac{6}{7}\)

\(\Leftrightarrow\left|x-3\right|=14\)

\(\Leftrightarrow x-3=14\) hoặc \(x-3=-14\)

\(\Leftrightarrow x=17\) hoặc \(x=-11\)