Cho \(a\ne b\ne c\)và \(abc\ne0\)
Tính \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)biết a(a-b) = b(b-c) = c(c-a)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lấy K là trung điểm CD thì HK là đường trung bình \(\Delta\)BCD => HK // BD và HK=BD/2
Từ HK=BD/2 và AH=BD/2 => \(\Delta\)AHK cân tại H => ^HAK = ^HKA. Mà ^HKA = ^ADB (Do HK //BD)
Nên ^HAK = ^ADB = ^ABC/2 + ^ACB hay ^BAC/2 = ^ABC/2 + ^ACB
<=> ^BAC = ^ABC + 2^ACB. Từ đó ta có hệ: \(\hept{\begin{cases}\widehat{BAC}=\widehat{ABC}+2\widehat{ACB}\\\widehat{ABC}+\widehat{BAC}+\widehat{ACB}=180^0\end{cases}}\)
Đến đây thì dễ rồi nhé !
Ví dụ : Lấy chân đá vào quả bóng
Lực chân đã tác dụng vào quả bóng làm quả bóng chuyển động
Chúc bạn học tốt !
Mk nghĩ là chia hết cho 48 chứ nhỉ???
A = n^3-3n^2-n+3 = n^2(n - 3) - (n-3) = (n -3)(n-1)(n+1)
vì n lẻ nên:
(n-1)(n+1) là tích của 2 số chẵn liên tiếp chia hết cho 8
(n - 3) là số chẵn chia hết cho 2
=> A chia hết cho 16(*)
mặt khác:
A = n^3-3n^2-n+3 = n^3 - n - 3(n^2 - 1) = n(n+1)(n-1) - 3(n^2-1)
xét các trường hợp:
n = 3k => n(n+1)(n-1) chia hết cho 3 => A chia hết cho 3
n = 3k + 1 => (n -1) chia hết cho 3 => A chia hết cho 3
n = 3k + 2 => (n+1) = 3k + 3 chia hết cho 3 => A chia hết cho 3
=> A chia hết cho 3 (**)
(*) và (**) => A chia hết cho 3.16 = 48 (3,16 là 2 số nguyên tố cùng nhau).
\(2x^2-2x\left(y+1\right)+\left(y+1\right)^2=??\)
ko cho bt đề làm sao làm được!
v:))
\(\frac{x+1}{x-2}+\frac{x-1}{x+2}=\frac{2\left(x^2+2\right)}{x^2-4}\left(x\ne\pm2\right)\)
\(\Leftrightarrow\frac{\left(x+1\right)\left(x+2\right)+\left(x-1\right)\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}=\frac{2\left(x^2+2\right)}{x^2-4}\)
\(\Leftrightarrow\frac{2x^2+4}{x^2-4}=\frac{2x^2+4}{x^2-4}\)
Vậy phương trình này có vô số nghiệm x thỏa mãn trừ x khác 2 và -2
Bài 2 :
a) \(P=x^2+y^2+xy+x+y\)
\(2P=2x^2+2y^2+2xy+2x+2y\)
\(2P=x^2+2xy+y^2+x^2+2x+1+y^2+2y+1-2\)
\(2P=\left(x+y\right)^2+\left(x+1\right)^2+\left(y+1\right)^2-2\)
\(P=\frac{\left(x+y\right)^2+\left(x+1\right)^2+\left(y+1\right)^2-2}{2}\)
\(P=\frac{\left(x+y\right)^2+\left(x+1\right)^2+\left(y+1\right)^2}{2}-1\le-1\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x+y=0\\x+1=0\\y+1=0\end{cases}}\)
Mình nghĩ đề phải là tìm GTLN của \(P=x^2+y^2+xy+x-y\)hoặc đổi dấu x và y thì dấu "=" mới xảy ra đc
@ Phương ơi ! Cái dòng \(P=\)cuối ấy . Chỗ đấy là \(\ge-1\)em nhé!