cho hình vẽ
a)So sánh góc MAC và góc BCN
b) chứng tỏ góc ACM=góc CBN
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải thích các bước giải:
Ban đầu số lượng công việc là 1
Gọi thời gian dự định là xx (ngày)
Năng suất dự định là 1x1x
Thực tế:
1212 công việc đầu làm với năng suất dự định là 1x1x
⇒⇒ thời gian thực hiện là 121x=x2121x=x2 ( ngày)
1212 công việc còn lại làm với năng suất 1x+1x.25%=54x1x+1x.25%=54x
Thời gian thực hiện là: 1254x=2x51254x=2x5 (ngày)
Thực tế làm sơm hơn 1 ngày nên ta có phương trình
x=x2+2x5+1x=x2+2x5+1
⇒x=10⇒x=10
Đội công nhân đã sửa đoạn đường trong 9 ngày.
Gọi đơn thức phải tìm là: \(ax^py^q\left(p,q\in N\right).\)Ta có:
\(3x^{n+3}y^{m-2}=\frac{2}{5}x^ny^2.ax^py^q;3x^{n+3}y^{m-2}=\frac{2}{5}ax^{n+p}y^{2+q}\)
\(\Rightarrow3=\frac{2}{5}a\Rightarrow a=3:\frac{2}{5}=\frac{15}{2}=7\frac{1}{2}\)
\(n+3=n+p\Rightarrow p=3\)
\(m-2=2+q\Rightarrow q=m-2-2=m-4\left(q\in Nvi-m\in Nva-m>4\right)\)
Vậy đơn thức phải tìm là \(7\frac{1}{2}x^3y^{m-4}\)và ta có \(3x^{n+3}y^{m-2}=\frac{2}{5}x^ny^2.7\frac{1}{2}x^3y^{m-4}\)
Áp dụng BĐT dạng \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có :
A = \(\left|x-1\right|+\left|x+2012\right|=\left|1-x\right|+\left|x+2012\right|\ge\left|1-x+x+2012\right|\)
\(\Leftrightarrow A\ge2013\)
Vậy GTNN của \(A=2013\)
Giastrij này đạt tại \(\left(1-x\right)\left(x+2012\right)\ge0\Leftrightarrow-2012\le x\le1\)
\(A=\left|x-1\right|+\left|x+2012\right|\)
\(A=\left|1-x\right|+\left|x+2012\right|\)
Áp dụng bất đẳng thức \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)ta có :
\(A\ge\left|1-x+x+2013\right|=2013\)
Dấu bằng xảy ra
\(\Leftrightarrow\left(1-x\right)\left(x+2012\right)=0\)
\(\Leftrightarrow-2012\le x\le1\)
Vậy Min A= 2013 \(\Leftrightarrow-2012\le x\le1\)