Từ M ở ngoài (O;R) kẻ cát tuyến MAB của (O;B). Đường trung trực của MB cắt (O;R) tại P,Q khi cát tuyến MAB quay quanh M.
CMR: trung điểm H của PQ nằm trên 1 đường tròn cố định
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(VT=3\left(a+b+c\right)+2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)\(=\left(3a+\frac{2}{a}\right)+\left(3b+\frac{2}{b}\right)+\left(3c+\frac{2}{c}\right)\)
*Nháp*
Dự đoán điểm rơi tại a = b = c = 1 khi đó VT = 15
Ta dự đoán BĐT phụ có dạng \(3x+\frac{2}{x}\ge mx^2+n\)(Ta thấy hạng tử trong điều kiện đã cho ban đầu có bậc là 2 nên VP của BĐT phụ cũng có bậc 2) (*)
Do đó ta có: \(3a+\frac{2}{a}\ge ma^2+n\);\(3b+\frac{2}{b}\ge mb^2+n\);\(3c+\frac{2}{c}\ge mc^2+n\)
Cộng theo vế của 3 BĐT trên, ta được: \(VT\ge m\left(a^2+b^2+c^2\right)+3n=3\left(m+n\right)=15\)
\(\Rightarrow m+n=5\Rightarrow n=5-m\)
Thay n = 5 - m vào (*), ta được: \(3x+\frac{2}{x}\ge mx^2+5-m\)
\(\Leftrightarrow\frac{3x^2-5x+2}{x}\ge m\left(x^2-1\right)\Leftrightarrow\frac{\left(x-1\right)\left(3x-2\right)}{x\left(x+1\right)}\ge m\left(x-1\right)\)
\(\Leftrightarrow m\le\frac{3x-2}{x\left(x+1\right)}\)(**)
Đồng nhất x = 1 vào (**), ta được: \(m=\frac{1}{2}\Rightarrow n=\frac{9}{2}\)
Ta được BĐT phụ \(3x+\frac{2}{x}\ge\frac{x^2}{2}+\frac{9}{2}\)
GIẢI:
Ta có: \(a^2+b^2+c^2=3\Rightarrow0< a^2;b^2;c^2\le3\Rightarrow0< a;b;b\le\sqrt{3}\)
Ta chứng minh BĐT phụ sau: \(3x+\frac{2}{x}\ge\frac{x^2}{2}+\frac{9}{2}\)(với \(0< x\le\sqrt{3}\))
\(\Leftrightarrow\frac{\left(4-x\right)\left(x-1\right)^2}{2x}\ge0\)(đúng với mọi \(0< x\le\sqrt{3}\))
Áp dụng, ta được: \(3a+\frac{2}{a}\ge\frac{a^2}{2}+\frac{9}{2}\);\(3b+\frac{2}{b}\ge\frac{b^2}{2}+\frac{9}{2}\);\(3c+\frac{2}{c}\ge\frac{c^2}{2}+\frac{9}{2}\)
Cộng theo vế của 3 BĐT trên, ta được: \(VT\ge\frac{1}{2}\left(a^2+b^2+c^2\right)+\frac{9}{2}.3=15\)
Đẳng thức xảy ra khi a = b = c = 1
hình chử nhật có chu vi là 150m chiều dài hơn chiều rộng là 15m tìm tỉ số của chiều rộng và chiều dài hinh chử nhật đó
Đặt t = x + 3
=> x + 2 = t - 1; x + 4 = t + 1.
ta có pt: (t - 1)^4 + (t + 1)^4 = 82
<=>[(t -1)²]² + [(t + 1)²]² = 82
<=> (t² - 2t + 1)² + (t² + 2t + 1)² = 82
<=> (t²+1)² - 4t(t²+1) + 4t² + (t²+1)² + 4t(t²+1) + 4t² = 82
<=> (t² + 1)² + 4t² = 41
<=> t^4 + 6t² + 1 = 41
<=> (t²)² + 6t² - 40 = 0
<=> t² = -10 (loại) hoặc t² = 4
<=> t = 2 hoặc t = -2
với t = -2 => x = -5
với t = 2 => x = -1
vậy pt có hai nghiệm là : x = -1 hoặc x = -5
\(f\left(x,y\right)=x^2+4y^2+1-4xy+2x-4y+y^2-2y+1+1\)
\(=\left(x-2y+1\right)^2+\left(y-1\right)^2+1\ge1>0\)
\(\Rightarrowđpcm\)
Ta có: \(\left(a+b+c\right)^3-27abc=\frac{7a+b+c}{2}\left(b-c\right)^2+\frac{7b+c+a}{2}\left(c-a\right)^2+\frac{7c+a+b}{2}\left(a-b\right)^2\)
Va` \(a+b+c-\sqrt{3\left(a^2+b^2+c^2\right)}=\frac{-\left(a-b\right)^2-\left(b-c\right)^2-\left(c-a\right)^2}{a+b+c+\sqrt{3\left(a^2+b^2+c^2\right)}}\)
\(BDT\Leftrightarrow\frac{\left(a+b+c\right)^3}{abc}-27+54\left(\frac{a+b+c}{\sqrt{3\left(a^2+b^2+c^2\right)}}-1\right)\ge0\)
\(\Leftrightarrow\frac{\left(a+b+c\right)^3-27abc}{abc}+54\left(\frac{a+b+c-\sqrt{3\left(a^2+b^2+c^2\right)}}{\sqrt{3\left(a^2+b^2+c^2\right)}}\right)\ge0\)
\(\Leftrightarrow\frac{Σ\left(\frac{7c+a+b}{2}\left(a-b\right)^2\right)}{abc}-\frac{\frac{Σ54\left(a-b\right)^2}{a+b+c+\sqrt{3\left(a^2+b^2+c^2\right)}}}{\sqrt{3\left(a^2+b^2+c^2\right)}}\ge0\)
\(\LeftrightarrowΣ\left(a-b\right)^2\left(\frac{\frac{7c+a+b}{2}}{abc}-\frac{\frac{54}{a+b+c+\sqrt{3\left(a^2+b^2+c^2\right)}}}{\sqrt{3\left(a^2+b^2+c^2\right)}}\right)\ge0\) *Đúng*
"=" <=> a=b=c :v
I. Nội qui tham gia "Giúp tôi giải toán"
1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;
2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.
3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.
Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.
THam khảo:Cho phương trình X^2-2mX+2m-1=0. Tìm m để phương trình trên có hai nghiệm X1 và X2 thoả mãn X1=3(X2)?
Phương trình X^2-2mX+2m-1=0 có
∆' = m^2-2m+1 = (m-1)^2 ≥ 0 với mọi m
nên pt có hai nghiệm x1, x2 với mọi m
Theo vi ét ta có
x1+x2=2m (1)
x1.x2=2m-1 (2)
mà x1 = 3x2 (3)
Thay (3) vào (1) ta có 4x2=2m suy ra x2 = m/2
Do đó x1 = 3.m/2 = 3m/2
Thế x1 và x2 vào (2) ta có phương trình:
3m/2 . m/2 = 2m-1
<=> 3m^2-8m+4=0
∆' = 4 suy ra √∆ = 2
Do đó
m1=(4+2)/3 = 2
m2=(4-2)/3=2/3
Vậy với m = 2 hoặc m = 2/3 thì
phương trình X^2-2mX+2m-1=0 có
hai nghiệm X1 và X2 thoả mãn X1=3(X2)
Chúc thành công