K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 2 2022

a, \(\Delta'=m^2-\left(m^2-4\right)=4>0\)

Vậy pt luôn có 2 nghiệm pb x1;x2 

Theo Vi et \(\hept{\begin{cases}x_1+x_2=2m\\x_1x_2=m^2-4\end{cases}}\)

Ta có : \(2x_1-3x_2=-1\left(3\right)\)Từ (1) ;(3) ta có hệ 

\(\hept{\begin{cases}2x_1+2x_2=4m\\2x_1-3x_2=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}5x_2=4m+1\\x_1=2m-x_2\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x_2=\frac{4m+1}{5}\\x_1=\frac{10-4m-1}{5}=\frac{-4m+9}{5}\end{cases}}\)

Thay vào (2) ta được \(\frac{\left(4m+1\right)\left(-4m+9\right)}{25}=m^2-4\)

\(\Rightarrow-16m^2+36m-4m+9=25\left(m^2-4\right)\)

\(\Leftrightarrow41m^2-32m-109=0\)

bạn tự tính = delta' nhé, có gì sai bảo mình do số khá to và phức tạp á 

19 tháng 2 2022

b, Ta có \(\left|x_1\right|=\left|x_2\right|\)suy ra 

\(\left|\frac{4m+1}{5}\right|=\left|\frac{9-4m}{5}\right|\Rightarrow\left|4m+1\right|=\left|9-4m\right|\)

TH1 : \(4m+1=9-4m\Leftrightarrow8m=8\Leftrightarrow m=1\)

TH2 : \(4m+1=4m-9\left(voli\right)\)

19 tháng 2 2022

a) x2-5x+6=0<=> (x2-2x)-(3x-6)=0<=>x(x-2)-3(x-2)=0<=>(x-3)(x-2)=0<=>x=3 hoặc x=2

19 tháng 2 2022

Bài 2 : 

a, bạn tự vẽ 

b, Hoành độ giao điểm tm pt 

\(2x^2+x-1=0\)ta có a - b + c = 2 - 1 - 1 = 0 

Vậy pt có 2nghiệm x = -1 ; x = 1/2 

Với x = -1 => y = 2 

Với x = 1/2 => y = 2.1/4 = 1/2 

Vậy (P) cắt (d) tại A(-1;2) ; B(1/2;1/2)

giải thích the ý hiểu thôi nhé

ta có thể chắc chắn rằng \(O,Q,N\) THẲNG HÀNG VÀ \(O,M,P\)THẲNG HÀNG

VÀ DO \(OM\perp AB;OP\perp CD\),2 ĐOẠN THẲNG  \(AB\) VÀ \(DC\) SONG SONG VỚI NHAU NÊN \(MP\) LÚC NÀY SẼ LÀ KHOẢNG CÁCH CỦA 2 ĐOẠN THẲNG  \(AB\) VÀ \(DC\) ,MP KO ĐỔI(DO CẠNH HÌNH VUÔNG ABCD KO ĐỔI),VÌ THẾ NẾU O NẰM TRONG HÌNH VUÔNG ABCD THÌ OP+OM=MP SẼ KO ĐỔI,CÒN NẾU O NẰM NGOÀI THÌ LÚC NÀY O SẼ KO CÒN  NẰM TRÊN ĐOẠN THẲNG MP nên lúc này \(OM+OP\ne MP\),NHƯ VẬY TA ĐÃ CM ĐC NẾU O NẰM TRONG HÌNH VUÔNG ABCD THÌ OM+OP KO ĐỔI(1)

CM TƯƠNG TỰ THÌ TA CÓ OQ+ON KO ĐỔI(2)(KHI MÀ O NẰM TRONG HÌNH VUÔNG ABCD)

TỪ 1 VÀ 2  \(\Rightarrow\) KHI O nằm TRONG HÌNH VUÔNG ABCD THÌ \(OM+ON+OP+OQ\) KO ĐỔI(ĐPCM)

COI QUÂN XE LÀ ĐIỂM O THÌ DO QUÂN XE CHỈ ĐI NGANG DỌC NÊN NÓ CŨNG ĐỊNH RA TRÊN BÀN CỜ NHỮNG ĐOẠN THẲNG VUÔNG GÓC NHÉ,CM TƯƠNG TỰ TRÊN LÀ ĐC

19 tháng 2 2022

Có thể giải thích như thế này:

Ta có \(S_{OAB}=\frac{1}{2}OM.AB=\frac{1}{2}a.OM\)\(S_{OBC}=\frac{1}{2}ON.BC=\frac{1}{2}a.ON\)\(S_{OCD}=\frac{1}{2}OP.CD=\frac{1}{2}a.OP\)\(S_{ODA}=\frac{1}{2}OQ.AD=\frac{1}{2}a.OQ\)

Từ đó ta có: \(S_{ABCD}=S_{OAB}+S_{OBC}+S_{OCD}+S_{OAD}=\frac{1}{2}a\left(OM+ON+OP+OQ\right)\)

Vì hình vuông ABCD cố định nên \(S_{ABCD}\)không đổi và \(a\)không đổi, từ đó dẫn đến \(OM+ON+OP+OQ\)không đổi.

(*) Cũng coi quân xe là điểm O và giải thích tương tự.

19 tháng 2 2022

TL

=5.149354281x10^12

nha

HT

19 tháng 2 2022

Ta có:

\(\frac{a\left(b+c\right)}{b^2+bc+c^2}=\frac{a\left(b+c\right)\left(ab+bc+ca\right)}{\left(b^2+bc+c^2\right)\left(ab+bc+ca\right)}\)

\(\ge\frac{4a\left(b+c\right)\left(ab+bc+ca\right)}{\left(b^2+bc+c^2+ab+bc+ca\right)}=\frac{4a\left(ab+bc+ca\right)}{\left(b+c\right)\left(a+b+c\right)^2}\)

Hoàn toàn tương tự, ta được:

\(\frac{a\left(b+c\right)}{b^2+bc+c^2}+\frac{b\left(c+a\right)}{c^2+ca+a^2}+\frac{c\left(a+b\right)}{a^2+ab+b^2}\)

\(\ge\frac{4a\left(ab+bc+ca\right)}{\left(b+c\right)\left(a+b+c\right)^2}+\frac{4b\left(ab+bc+ca\right)}{\left(c+a\right)\left(a+b+c\right)^2}+\frac{4c\left(ab+bc+ca\right)}{\left(a+b\right)\left(a+b+c\right)^2}\)

Ta viết lại bất đẳng thức trên thành:

\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)}\)

Đánh giá trên đúng theo bất đẳng thức Bunhiacopxki dạng phân thức. Vậy bất đẳng thức được chứng minh

19 tháng 2 2022

Ta có : \(2\sqrt{x}+2\ge2\Rightarrow A\le\frac{6}{2}=3\)

Dấu ''='' xảy ra khi x = 0 

19 tháng 2 2022

Với \(x\ge-1\Rightarrow x+1\ge0\Leftrightarrow-2\sqrt{x+1}\le0\Leftrightarrow A\le6\)

Dấu ''='' xảy ra khi x = -1