K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 3 2018

a, VP >= \(2\sqrt{\left(x+1\right).\frac{1}{x+1}}\)=   2

VT^2 = 2 + 2\(\sqrt{\left(1-2017x\right).\left(1+2017x\right)}\)< = 2 + 1-2017x+1+2017x = 4

=> VT < = 2

=> VT < = VP

Dấu "=" xảy ra <=> 1-2017x = 1+2017x và x+1 = 1 <=> x=0

Vậy ............

4 tháng 3 2018

b, Có : 4 = (1/x+1/y+1/z)^2 = 1/x^2 + 1/y^2 + 1/z^2 + 2/xy + 2/yz + 2/zx

=> 1/x^2+1/y^2+1/z^2+2/xy+2/yz+2/zx = 2/xy-1/z^2

<=> 1/x^2+1/y^2+1z^2+2/xy+2/yz+2/zx-2/xy+1/z^2 = 0

<<=> 1/x^2+1/y^2+2/z^2+2/yz+2/zx = 0

<=> (1/x+1/z)^2 + (1/y+1/z)^2 = 0

<=> 1/x+1/z = 1/y+1/z = 0

<=> x=y=-z

<=> x=y=1/2 ; z=-1/2

Tk mk nha

4 tháng 3 2018

hello bạn

7 tháng 3 2018

Dễ thấy đc nghiệm (0;1;0) và (0;-1;0) rồi nhưng kb còn nghiệm khác hay k

18 tháng 4 2020

tự giải trên Symbolab

18 tháng 4 2020

CHÚ Ý

Nếu bạn nào t.i.c.k sai câu trả lời ("tự giải trên Symbolab") thì đừng có trách tui đấy.

4 tháng 3 2018

chỗ 3 chấm là gì tùy người ra câu hỏi và giải câu hỏi

4 tháng 3 2018

1+1=2

hok tốt

4 tháng 3 2018

Số phức là số có dạng a+bi, trong đó a và b là các số thực, i là đơn vị ảo, với i2=-1.[1] Trong biểu thức này, số a gọi là phần thực, b gọi là phần ảo của số phức. Số phức có thể được biểu diễn trên mặt phẳng phức với trục hoành là trục thực và trục tung là trục ảo, do đó một số phức a+bi được xác định bằng một điểm có tọa độ (a,b). Một số phức nếu có phần thực bằng không thì gọi là số thuần ảo, nếu có phần ảo bằng không thì trở thành là số thực. Việc mở rộng trường số phức để giải những bài toán mà không thể giải trong trường số thực.

Số phức được sử dụng trong nhiều lĩnh vực khoa học, như khoa học kỹ thuật, điện từ học, cơ học lượng tử, toán học ứng dụng chẳng hạn như trong lý thuyết hỗn độn. Nhà toán học người Ý Gerolamo Cardano là người đầu tiên đưa ra số phức. Ông sử dụng số phức để giải các phương trình bậc ba trong thế kỷ XVI.[2]

Tích nha

5 tháng 3 2018

https://vi.wikipedia.org/wiki/Số_phức

4 tháng 3 2018

Acc nm 1 tỉ 5 sm nha

3 tháng 9 2018

Áp dụng BĐT AM-GM ta có:

\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge3.\sqrt[3]{abc}.3\sqrt[3]{\frac{1}{abc}}=9\)     

Do  \(a+b+c=1\)

nên   \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge9\)

Dấu "=" xảy ra khi  \(a=b=c=\frac{1}{3}\)

4 tháng 3 2018

Có acc sv5 nek

3 tháng 9 2018

Áp dụng BĐT AM-GM ta có:

\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge3.\sqrt[3]{abc}.3\sqrt[3]{\frac{1}{abc}}=9\)     

Do  \(a+b+c=1\)

nên   \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge9\)

Dấu "=" xảy ra khi  \(a=b=c=\frac{1}{3}\)